aboutsummaryrefslogtreecommitdiff
path: root/content
diff options
context:
space:
mode:
Diffstat (limited to 'content')
-rw-r--r--content/blog/csca5632-final/index.md115
-rw-r--r--content/blog/csca5632-final/notebook.html9074
2 files changed, 9189 insertions, 0 deletions
diff --git a/content/blog/csca5632-final/index.md b/content/blog/csca5632-final/index.md
new file mode 100644
index 0000000..e2b1b66
--- /dev/null
+++ b/content/blog/csca5632-final/index.md
@@ -0,0 +1,115 @@
++++
+title = "🌸 Clustering Iris Species with K-Means and Hierarchical Methods"
+description = "A hands-on comparison of K-Means and Agglomerative Clustering on the Iris dataset, with insights into performance, parameter tuning, and practical trade-offs."
+date = 2025-11-01
+[taxonomies]
+tags = ["machine_learning"]
+[extra]
+styles = ["notebooks.css", ]
++++
+
+## Why Clustering?
+
+Clustering is a foundational technique in unsupervised learning, used to
+uncover patterns in data without predefined labels. This project explores how
+two popular clustering algorithms—**K-Means** and **Agglomerative Hierarchical
+Clustering**—perform on the well-known **Iris flower dataset**, aiming to group
+samples by species based solely on their morphological features.
+
+***
+
+## About the Dataset
+
+The Iris dataset contains **150 samples** from three species: *setosa*,
+*versicolor*, and *virginica*. Each sample includes four features:
+
+* Sepal length
+* Sepal width
+* Petal length
+* Petal width
+
+While *setosa* is linearly separable, *versicolor* and *virginica* overlap
+significantly, making this dataset ideal for testing clustering algorithms.
+
+***
+
+## What Was Explored
+
+The analysis focused on:
+
+* Comparing **K-Means** and **Agglomerative Clustering**
+* Evaluating performance using **accuracy**, **silhouette score**, and
+**Adjusted Rand Index (ARI)**
+* Testing different **linkage methods** and **distance metrics**
+* Visualizing clusters and errors using **PCA**
+
+***
+
+## Key Experiments & Findings
+
+### Dimensionality Reduction with PCA
+
+* **95.8%** of the variance was captured using just **2 principal components**, confirming
+strong correlations among features—especially between petal length and width.
+
+### Optimal Cluster Count
+
+* Using metrics like **inertia**, **silhouette score**, and **accuracy**, the optimal
+number of clusters was found to be **3**, matching the true number of species.
+
+### Parameter Tuning for Agglomerative Clustering
+
+* Tried combinations of:
+ * Linkage: `ward`, `complete`, `average`, `single`
+ * Metrics: `euclidean`, `manhattan`, `cosine`
+* **Best result**: `average linkage` with `manhattan distance` achieved **88.7%
+accuracy**, outperforming default settings.
+
+### Performance Comparison
+
+| Algorithm | Accuracy | Silhouette Score | ARI |
+| ----------------------- | :------: | :--------------: | :--: |
+| K-Means | 83.3% | 0.46 | 0.62 |
+| Agglomerative (default) | 82.7% | 0.45 | 0.61 |
+| Agglomerative (best) | 88.7% | 0.45 | 0.72 |
+
+***
+
+## Error Analysis
+
+* **Setosa** was classified almost perfectly across all methods.
+* Most errors occurred between **versicolor** and **virginica**, confirming
+their overlapping nature.
+* Agglomerative Clustering showed **bias** depending on parameters—sometimes
+misclassifying one species more than the other.
+
+***
+
+## Final Thoughts
+
+While Agglomerative Clustering achieved the highest accuracy with tuned
+parameters, its **sensitivity to configuration** and **instability** in cluster
+composition make it less reliable for real-world applications without labeled
+data.
+
+**K-Means**, despite slightly lower accuracy, offered **more balanced results**
+and **greater stability**, making it a safer choice for practical clustering
+tasks.
+
+***
+
+## Future Work
+
+* Extend analysis to other clustering algorithms like DBSCAN or Spectral Clustering
+* Apply to more complex datasets
+* Explore automated parameter tuning techniques
+
+***
+
+The full notebook with code and visualizations is embedded below 👇
+
+<!-- markdownlint-disable MD033 -->
+<iframe title="Spam Email Classification notebook" class="notebook-embed" src="notebook.html"></iframe>
+
+You can also view the notebook in [a separate page](notebook.html), or check it
+on [GitHub](https://github.com/Farzat07/Unsupervised-Learning-Final-Project-Iris-Species-Clustering-Analysis).
diff --git a/content/blog/csca5632-final/notebook.html b/content/blog/csca5632-final/notebook.html
new file mode 100644
index 0000000..67bd813
--- /dev/null
+++ b/content/blog/csca5632-final/notebook.html
@@ -0,0 +1,9074 @@
+<!DOCTYPE html>
+
+<html lang="en">
+<head><meta charset="utf-8"/>
+<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
+<title>cours2FinalSubmission</title><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.1.10/require.min.js"></script>
+<style type="text/css">
+ pre { line-height: 125%; }
+td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
+span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; }
+td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
+span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; }
+.highlight .hll { background-color: var(--jp-cell-editor-active-background) }
+.highlight { background: var(--jp-cell-editor-background); color: var(--jp-mirror-editor-variable-color) }
+.highlight .c { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment */
+.highlight .err { color: var(--jp-mirror-editor-error-color) } /* Error */
+.highlight .k { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword */
+.highlight .o { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator */
+.highlight .p { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation */
+.highlight .ch { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Hashbang */
+.highlight .cm { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Multiline */
+.highlight .cp { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Preproc */
+.highlight .cpf { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.PreprocFile */
+.highlight .c1 { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Single */
+.highlight .cs { color: var(--jp-mirror-editor-comment-color); font-style: italic } /* Comment.Special */
+.highlight .kc { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Constant */
+.highlight .kd { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Declaration */
+.highlight .kn { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Namespace */
+.highlight .kp { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Pseudo */
+.highlight .kr { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Reserved */
+.highlight .kt { color: var(--jp-mirror-editor-keyword-color); font-weight: bold } /* Keyword.Type */
+.highlight .m { color: var(--jp-mirror-editor-number-color) } /* Literal.Number */
+.highlight .s { color: var(--jp-mirror-editor-string-color) } /* Literal.String */
+.highlight .ow { color: var(--jp-mirror-editor-operator-color); font-weight: bold } /* Operator.Word */
+.highlight .pm { color: var(--jp-mirror-editor-punctuation-color) } /* Punctuation.Marker */
+.highlight .w { color: var(--jp-mirror-editor-variable-color) } /* Text.Whitespace */
+.highlight .mb { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Bin */
+.highlight .mf { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Float */
+.highlight .mh { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Hex */
+.highlight .mi { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer */
+.highlight .mo { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Oct */
+.highlight .sa { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Affix */
+.highlight .sb { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Backtick */
+.highlight .sc { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Char */
+.highlight .dl { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Delimiter */
+.highlight .sd { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Doc */
+.highlight .s2 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Double */
+.highlight .se { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Escape */
+.highlight .sh { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Heredoc */
+.highlight .si { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Interpol */
+.highlight .sx { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Other */
+.highlight .sr { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Regex */
+.highlight .s1 { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Single */
+.highlight .ss { color: var(--jp-mirror-editor-string-color) } /* Literal.String.Symbol */
+.highlight .il { color: var(--jp-mirror-editor-number-color) } /* Literal.Number.Integer.Long */
+ </style>
+<style type="text/css">
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*
+ * Mozilla scrollbar styling
+ */
+
+/* use standard opaque scrollbars for most nodes */
+[data-jp-theme-scrollbars='true'] {
+ scrollbar-color: rgb(var(--jp-scrollbar-thumb-color))
+ var(--jp-scrollbar-background-color);
+}
+
+/* for code nodes, use a transparent style of scrollbar. These selectors
+ * will match lower in the tree, and so will override the above */
+[data-jp-theme-scrollbars='true'] .CodeMirror-hscrollbar,
+[data-jp-theme-scrollbars='true'] .CodeMirror-vscrollbar {
+ scrollbar-color: rgba(var(--jp-scrollbar-thumb-color), 0.5) transparent;
+}
+
+/* tiny scrollbar */
+
+.jp-scrollbar-tiny {
+ scrollbar-color: rgba(var(--jp-scrollbar-thumb-color), 0.5) transparent;
+ scrollbar-width: thin;
+}
+
+/* tiny scrollbar */
+
+.jp-scrollbar-tiny::-webkit-scrollbar,
+.jp-scrollbar-tiny::-webkit-scrollbar-corner {
+ background-color: transparent;
+ height: 4px;
+ width: 4px;
+}
+
+.jp-scrollbar-tiny::-webkit-scrollbar-thumb {
+ background: rgba(var(--jp-scrollbar-thumb-color), 0.5);
+}
+
+.jp-scrollbar-tiny::-webkit-scrollbar-track:horizontal {
+ border-left: 0 solid transparent;
+ border-right: 0 solid transparent;
+}
+
+.jp-scrollbar-tiny::-webkit-scrollbar-track:vertical {
+ border-top: 0 solid transparent;
+ border-bottom: 0 solid transparent;
+}
+
+/*
+ * Lumino
+ */
+
+.lm-ScrollBar[data-orientation='horizontal'] {
+ min-height: 16px;
+ max-height: 16px;
+ min-width: 45px;
+ border-top: 1px solid #a0a0a0;
+}
+
+.lm-ScrollBar[data-orientation='vertical'] {
+ min-width: 16px;
+ max-width: 16px;
+ min-height: 45px;
+ border-left: 1px solid #a0a0a0;
+}
+
+.lm-ScrollBar-button {
+ background-color: #f0f0f0;
+ background-position: center center;
+ min-height: 15px;
+ max-height: 15px;
+ min-width: 15px;
+ max-width: 15px;
+}
+
+.lm-ScrollBar-button:hover {
+ background-color: #dadada;
+}
+
+.lm-ScrollBar-button.lm-mod-active {
+ background-color: #cdcdcd;
+}
+
+.lm-ScrollBar-track {
+ background: #f0f0f0;
+}
+
+.lm-ScrollBar-thumb {
+ background: #cdcdcd;
+}
+
+.lm-ScrollBar-thumb:hover {
+ background: #bababa;
+}
+
+.lm-ScrollBar-thumb.lm-mod-active {
+ background: #a0a0a0;
+}
+
+.lm-ScrollBar[data-orientation='horizontal'] .lm-ScrollBar-thumb {
+ height: 100%;
+ min-width: 15px;
+ border-left: 1px solid #a0a0a0;
+ border-right: 1px solid #a0a0a0;
+}
+
+.lm-ScrollBar[data-orientation='vertical'] .lm-ScrollBar-thumb {
+ width: 100%;
+ min-height: 15px;
+ border-top: 1px solid #a0a0a0;
+ border-bottom: 1px solid #a0a0a0;
+}
+
+.lm-ScrollBar[data-orientation='horizontal']
+ .lm-ScrollBar-button[data-action='decrement'] {
+ background-image: var(--jp-icon-caret-left);
+ background-size: 17px;
+}
+
+.lm-ScrollBar[data-orientation='horizontal']
+ .lm-ScrollBar-button[data-action='increment'] {
+ background-image: var(--jp-icon-caret-right);
+ background-size: 17px;
+}
+
+.lm-ScrollBar[data-orientation='vertical']
+ .lm-ScrollBar-button[data-action='decrement'] {
+ background-image: var(--jp-icon-caret-up);
+ background-size: 17px;
+}
+
+.lm-ScrollBar[data-orientation='vertical']
+ .lm-ScrollBar-button[data-action='increment'] {
+ background-image: var(--jp-icon-caret-down);
+ background-size: 17px;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-Widget {
+ box-sizing: border-box;
+ position: relative;
+ overflow: hidden;
+}
+
+.lm-Widget.lm-mod-hidden {
+ display: none !important;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+.lm-AccordionPanel[data-orientation='horizontal'] > .lm-AccordionPanel-title {
+ /* Title is rotated for horizontal accordion panel using CSS */
+ display: block;
+ transform-origin: top left;
+ transform: rotate(-90deg) translate(-100%);
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-CommandPalette {
+ display: flex;
+ flex-direction: column;
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+.lm-CommandPalette-search {
+ flex: 0 0 auto;
+}
+
+.lm-CommandPalette-content {
+ flex: 1 1 auto;
+ margin: 0;
+ padding: 0;
+ min-height: 0;
+ overflow: auto;
+ list-style-type: none;
+}
+
+.lm-CommandPalette-header {
+ overflow: hidden;
+ white-space: nowrap;
+ text-overflow: ellipsis;
+}
+
+.lm-CommandPalette-item {
+ display: flex;
+ flex-direction: row;
+}
+
+.lm-CommandPalette-itemIcon {
+ flex: 0 0 auto;
+}
+
+.lm-CommandPalette-itemContent {
+ flex: 1 1 auto;
+ overflow: hidden;
+}
+
+.lm-CommandPalette-itemShortcut {
+ flex: 0 0 auto;
+}
+
+.lm-CommandPalette-itemLabel {
+ overflow: hidden;
+ white-space: nowrap;
+ text-overflow: ellipsis;
+}
+
+.lm-close-icon {
+ border: 1px solid transparent;
+ background-color: transparent;
+ position: absolute;
+ z-index: 1;
+ right: 3%;
+ top: 0;
+ bottom: 0;
+ margin: auto;
+ padding: 7px 0;
+ display: none;
+ vertical-align: middle;
+ outline: 0;
+ cursor: pointer;
+}
+.lm-close-icon:after {
+ content: 'X';
+ display: block;
+ width: 15px;
+ height: 15px;
+ text-align: center;
+ color: #000;
+ font-weight: normal;
+ font-size: 12px;
+ cursor: pointer;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-DockPanel {
+ z-index: 0;
+}
+
+.lm-DockPanel-widget {
+ z-index: 0;
+}
+
+.lm-DockPanel-tabBar {
+ z-index: 1;
+}
+
+.lm-DockPanel-handle {
+ z-index: 2;
+}
+
+.lm-DockPanel-handle.lm-mod-hidden {
+ display: none !important;
+}
+
+.lm-DockPanel-handle:after {
+ position: absolute;
+ top: 0;
+ left: 0;
+ width: 100%;
+ height: 100%;
+ content: '';
+}
+
+.lm-DockPanel-handle[data-orientation='horizontal'] {
+ cursor: ew-resize;
+}
+
+.lm-DockPanel-handle[data-orientation='vertical'] {
+ cursor: ns-resize;
+}
+
+.lm-DockPanel-handle[data-orientation='horizontal']:after {
+ left: 50%;
+ min-width: 8px;
+ transform: translateX(-50%);
+}
+
+.lm-DockPanel-handle[data-orientation='vertical']:after {
+ top: 50%;
+ min-height: 8px;
+ transform: translateY(-50%);
+}
+
+.lm-DockPanel-overlay {
+ z-index: 3;
+ box-sizing: border-box;
+ pointer-events: none;
+}
+
+.lm-DockPanel-overlay.lm-mod-hidden {
+ display: none !important;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-Menu {
+ z-index: 10000;
+ position: absolute;
+ white-space: nowrap;
+ overflow-x: hidden;
+ overflow-y: auto;
+ outline: none;
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+.lm-Menu-content {
+ margin: 0;
+ padding: 0;
+ display: table;
+ list-style-type: none;
+}
+
+.lm-Menu-item {
+ display: table-row;
+}
+
+.lm-Menu-item.lm-mod-hidden,
+.lm-Menu-item.lm-mod-collapsed {
+ display: none !important;
+}
+
+.lm-Menu-itemIcon,
+.lm-Menu-itemSubmenuIcon {
+ display: table-cell;
+ text-align: center;
+}
+
+.lm-Menu-itemLabel {
+ display: table-cell;
+ text-align: left;
+}
+
+.lm-Menu-itemShortcut {
+ display: table-cell;
+ text-align: right;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-MenuBar {
+ outline: none;
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+.lm-MenuBar-content {
+ margin: 0;
+ padding: 0;
+ display: flex;
+ flex-direction: row;
+ list-style-type: none;
+}
+
+.lm-MenuBar-item {
+ box-sizing: border-box;
+}
+
+.lm-MenuBar-itemIcon,
+.lm-MenuBar-itemLabel {
+ display: inline-block;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-ScrollBar {
+ display: flex;
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+.lm-ScrollBar[data-orientation='horizontal'] {
+ flex-direction: row;
+}
+
+.lm-ScrollBar[data-orientation='vertical'] {
+ flex-direction: column;
+}
+
+.lm-ScrollBar-button {
+ box-sizing: border-box;
+ flex: 0 0 auto;
+}
+
+.lm-ScrollBar-track {
+ box-sizing: border-box;
+ position: relative;
+ overflow: hidden;
+ flex: 1 1 auto;
+}
+
+.lm-ScrollBar-thumb {
+ box-sizing: border-box;
+ position: absolute;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-SplitPanel-child {
+ z-index: 0;
+}
+
+.lm-SplitPanel-handle {
+ z-index: 1;
+}
+
+.lm-SplitPanel-handle.lm-mod-hidden {
+ display: none !important;
+}
+
+.lm-SplitPanel-handle:after {
+ position: absolute;
+ top: 0;
+ left: 0;
+ width: 100%;
+ height: 100%;
+ content: '';
+}
+
+.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle {
+ cursor: ew-resize;
+}
+
+.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle {
+ cursor: ns-resize;
+}
+
+.lm-SplitPanel[data-orientation='horizontal'] > .lm-SplitPanel-handle:after {
+ left: 50%;
+ min-width: 8px;
+ transform: translateX(-50%);
+}
+
+.lm-SplitPanel[data-orientation='vertical'] > .lm-SplitPanel-handle:after {
+ top: 50%;
+ min-height: 8px;
+ transform: translateY(-50%);
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-TabBar {
+ display: flex;
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+.lm-TabBar[data-orientation='horizontal'] {
+ flex-direction: row;
+ align-items: flex-end;
+}
+
+.lm-TabBar[data-orientation='vertical'] {
+ flex-direction: column;
+ align-items: flex-end;
+}
+
+.lm-TabBar-content {
+ margin: 0;
+ padding: 0;
+ display: flex;
+ flex: 1 1 auto;
+ list-style-type: none;
+}
+
+.lm-TabBar[data-orientation='horizontal'] > .lm-TabBar-content {
+ flex-direction: row;
+}
+
+.lm-TabBar[data-orientation='vertical'] > .lm-TabBar-content {
+ flex-direction: column;
+}
+
+.lm-TabBar-tab {
+ display: flex;
+ flex-direction: row;
+ box-sizing: border-box;
+ overflow: hidden;
+ touch-action: none; /* Disable native Drag/Drop */
+}
+
+.lm-TabBar-tabIcon,
+.lm-TabBar-tabCloseIcon {
+ flex: 0 0 auto;
+}
+
+.lm-TabBar-tabLabel {
+ flex: 1 1 auto;
+ overflow: hidden;
+ white-space: nowrap;
+}
+
+.lm-TabBar-tabInput {
+ user-select: all;
+ width: 100%;
+ box-sizing: border-box;
+}
+
+.lm-TabBar-tab.lm-mod-hidden {
+ display: none !important;
+}
+
+.lm-TabBar-addButton.lm-mod-hidden {
+ display: none !important;
+}
+
+.lm-TabBar.lm-mod-dragging .lm-TabBar-tab {
+ position: relative;
+}
+
+.lm-TabBar.lm-mod-dragging[data-orientation='horizontal'] .lm-TabBar-tab {
+ left: 0;
+ transition: left 150ms ease;
+}
+
+.lm-TabBar.lm-mod-dragging[data-orientation='vertical'] .lm-TabBar-tab {
+ top: 0;
+ transition: top 150ms ease;
+}
+
+.lm-TabBar.lm-mod-dragging .lm-TabBar-tab.lm-mod-dragging {
+ transition: none;
+}
+
+.lm-TabBar-tabLabel .lm-TabBar-tabInput {
+ user-select: all;
+ width: 100%;
+ box-sizing: border-box;
+ background: inherit;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-TabPanel-tabBar {
+ z-index: 1;
+}
+
+.lm-TabPanel-stackedPanel {
+ z-index: 0;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-Collapse {
+ display: flex;
+ flex-direction: column;
+ align-items: stretch;
+}
+
+.jp-Collapse-header {
+ padding: 1px 12px;
+ background-color: var(--jp-layout-color1);
+ border-bottom: solid var(--jp-border-width) var(--jp-border-color2);
+ color: var(--jp-ui-font-color1);
+ cursor: pointer;
+ display: flex;
+ align-items: center;
+ font-size: var(--jp-ui-font-size0);
+ font-weight: 600;
+ text-transform: uppercase;
+ user-select: none;
+}
+
+.jp-Collapser-icon {
+ height: 16px;
+}
+
+.jp-Collapse-header-collapsed .jp-Collapser-icon {
+ transform: rotate(-90deg);
+ margin: auto 0;
+}
+
+.jp-Collapser-title {
+ line-height: 25px;
+}
+
+.jp-Collapse-contents {
+ padding: 0 12px;
+ background-color: var(--jp-layout-color1);
+ color: var(--jp-ui-font-color1);
+ overflow: auto;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/* This file was auto-generated by ensureUiComponents() in @jupyterlab/buildutils */
+
+/**
+ * (DEPRECATED) Support for consuming icons as CSS background images
+ */
+
+/* Icons urls */
+
+:root {
+ --jp-icon-add-above: url();
+ --jp-icon-add-below: url();
+ --jp-icon-add: url();
+ --jp-icon-bell: url();
+ --jp-icon-bug-dot: url();
+ --jp-icon-bug: url();
+ --jp-icon-build: url();
+ --jp-icon-caret-down-empty-thin: url();
+ --jp-icon-caret-down-empty: url();
+ --jp-icon-caret-down: url();
+ --jp-icon-caret-left: url();
+ --jp-icon-caret-right: url();
+ --jp-icon-caret-up-empty-thin: url();
+ --jp-icon-caret-up: url();
+ --jp-icon-case-sensitive: url();
+ --jp-icon-check: url();
+ --jp-icon-circle-empty: url();
+ --jp-icon-circle: url();
+ --jp-icon-clear: url();
+ --jp-icon-close: url();
+ --jp-icon-code-check: url();
+ --jp-icon-code: url();
+ --jp-icon-collapse-all: url();
+ --jp-icon-console: url();
+ --jp-icon-copy: url();
+ --jp-icon-copyright: url();
+ --jp-icon-cut: url();
+ --jp-icon-delete: url();
+ --jp-icon-download: url();
+ --jp-icon-duplicate: url();
+ --jp-icon-edit: url();
+ --jp-icon-ellipses: url();
+ --jp-icon-error: url();
+ --jp-icon-expand-all: url();
+ --jp-icon-extension: url();
+ --jp-icon-fast-forward: url();
+ --jp-icon-file-upload: url();
+ --jp-icon-file: url();
+ --jp-icon-filter-dot: url();
+ --jp-icon-filter-list: url();
+ --jp-icon-filter: url();
+ --jp-icon-folder-favorite: url();
+ --jp-icon-folder: url();
+ --jp-icon-home: url();
+ --jp-icon-html5: url();
+ --jp-icon-image: url();
+ --jp-icon-info: url();
+ --jp-icon-inspector: url();
+ --jp-icon-json: url();
+ --jp-icon-julia: url();
+ --jp-icon-jupyter-favicon: url();
+ --jp-icon-jupyter: url();
+ --jp-icon-jupyterlab-wordmark: url();
+ --jp-icon-kernel: url();
+ --jp-icon-keyboard: url();
+ --jp-icon-launch: url();
+ --jp-icon-launcher: url();
+ --jp-icon-line-form: url();
+ --jp-icon-link: url();
+ --jp-icon-list: url();
+ --jp-icon-markdown: url();
+ --jp-icon-move-down: url();
+ --jp-icon-move-up: url();
+ --jp-icon-new-folder: url();
+ --jp-icon-not-trusted: url();
+ --jp-icon-notebook: url();
+ --jp-icon-numbering: url();
+ --jp-icon-offline-bolt: url();
+ --jp-icon-palette: url();
+ --jp-icon-paste: url();
+ --jp-icon-pdf: url();
+ --jp-icon-python: url();
+ --jp-icon-r-kernel: url();
+ --jp-icon-react: url();
+ --jp-icon-redo: url();
+ --jp-icon-refresh: url();
+ --jp-icon-regex: url();
+ --jp-icon-run: url();
+ --jp-icon-running: url();
+ --jp-icon-save: url();
+ --jp-icon-search: url();
+ --jp-icon-settings: url();
+ --jp-icon-share: url();
+ --jp-icon-spreadsheet: url();
+ --jp-icon-stop: url();
+ --jp-icon-tab: url();
+ --jp-icon-table-rows: url();
+ --jp-icon-tag: url();
+ --jp-icon-terminal: url();
+ --jp-icon-text-editor: url();
+ --jp-icon-toc: url();
+ --jp-icon-tree-view: url();
+ --jp-icon-trusted: url();
+ --jp-icon-undo: url();
+ --jp-icon-user: url();
+ --jp-icon-users: url();
+ --jp-icon-vega: url();
+ --jp-icon-word: url();
+ --jp-icon-yaml: url();
+}
+
+/* Icon CSS class declarations */
+
+.jp-AddAboveIcon {
+ background-image: var(--jp-icon-add-above);
+}
+
+.jp-AddBelowIcon {
+ background-image: var(--jp-icon-add-below);
+}
+
+.jp-AddIcon {
+ background-image: var(--jp-icon-add);
+}
+
+.jp-BellIcon {
+ background-image: var(--jp-icon-bell);
+}
+
+.jp-BugDotIcon {
+ background-image: var(--jp-icon-bug-dot);
+}
+
+.jp-BugIcon {
+ background-image: var(--jp-icon-bug);
+}
+
+.jp-BuildIcon {
+ background-image: var(--jp-icon-build);
+}
+
+.jp-CaretDownEmptyIcon {
+ background-image: var(--jp-icon-caret-down-empty);
+}
+
+.jp-CaretDownEmptyThinIcon {
+ background-image: var(--jp-icon-caret-down-empty-thin);
+}
+
+.jp-CaretDownIcon {
+ background-image: var(--jp-icon-caret-down);
+}
+
+.jp-CaretLeftIcon {
+ background-image: var(--jp-icon-caret-left);
+}
+
+.jp-CaretRightIcon {
+ background-image: var(--jp-icon-caret-right);
+}
+
+.jp-CaretUpEmptyThinIcon {
+ background-image: var(--jp-icon-caret-up-empty-thin);
+}
+
+.jp-CaretUpIcon {
+ background-image: var(--jp-icon-caret-up);
+}
+
+.jp-CaseSensitiveIcon {
+ background-image: var(--jp-icon-case-sensitive);
+}
+
+.jp-CheckIcon {
+ background-image: var(--jp-icon-check);
+}
+
+.jp-CircleEmptyIcon {
+ background-image: var(--jp-icon-circle-empty);
+}
+
+.jp-CircleIcon {
+ background-image: var(--jp-icon-circle);
+}
+
+.jp-ClearIcon {
+ background-image: var(--jp-icon-clear);
+}
+
+.jp-CloseIcon {
+ background-image: var(--jp-icon-close);
+}
+
+.jp-CodeCheckIcon {
+ background-image: var(--jp-icon-code-check);
+}
+
+.jp-CodeIcon {
+ background-image: var(--jp-icon-code);
+}
+
+.jp-CollapseAllIcon {
+ background-image: var(--jp-icon-collapse-all);
+}
+
+.jp-ConsoleIcon {
+ background-image: var(--jp-icon-console);
+}
+
+.jp-CopyIcon {
+ background-image: var(--jp-icon-copy);
+}
+
+.jp-CopyrightIcon {
+ background-image: var(--jp-icon-copyright);
+}
+
+.jp-CutIcon {
+ background-image: var(--jp-icon-cut);
+}
+
+.jp-DeleteIcon {
+ background-image: var(--jp-icon-delete);
+}
+
+.jp-DownloadIcon {
+ background-image: var(--jp-icon-download);
+}
+
+.jp-DuplicateIcon {
+ background-image: var(--jp-icon-duplicate);
+}
+
+.jp-EditIcon {
+ background-image: var(--jp-icon-edit);
+}
+
+.jp-EllipsesIcon {
+ background-image: var(--jp-icon-ellipses);
+}
+
+.jp-ErrorIcon {
+ background-image: var(--jp-icon-error);
+}
+
+.jp-ExpandAllIcon {
+ background-image: var(--jp-icon-expand-all);
+}
+
+.jp-ExtensionIcon {
+ background-image: var(--jp-icon-extension);
+}
+
+.jp-FastForwardIcon {
+ background-image: var(--jp-icon-fast-forward);
+}
+
+.jp-FileIcon {
+ background-image: var(--jp-icon-file);
+}
+
+.jp-FileUploadIcon {
+ background-image: var(--jp-icon-file-upload);
+}
+
+.jp-FilterDotIcon {
+ background-image: var(--jp-icon-filter-dot);
+}
+
+.jp-FilterIcon {
+ background-image: var(--jp-icon-filter);
+}
+
+.jp-FilterListIcon {
+ background-image: var(--jp-icon-filter-list);
+}
+
+.jp-FolderFavoriteIcon {
+ background-image: var(--jp-icon-folder-favorite);
+}
+
+.jp-FolderIcon {
+ background-image: var(--jp-icon-folder);
+}
+
+.jp-HomeIcon {
+ background-image: var(--jp-icon-home);
+}
+
+.jp-Html5Icon {
+ background-image: var(--jp-icon-html5);
+}
+
+.jp-ImageIcon {
+ background-image: var(--jp-icon-image);
+}
+
+.jp-InfoIcon {
+ background-image: var(--jp-icon-info);
+}
+
+.jp-InspectorIcon {
+ background-image: var(--jp-icon-inspector);
+}
+
+.jp-JsonIcon {
+ background-image: var(--jp-icon-json);
+}
+
+.jp-JuliaIcon {
+ background-image: var(--jp-icon-julia);
+}
+
+.jp-JupyterFaviconIcon {
+ background-image: var(--jp-icon-jupyter-favicon);
+}
+
+.jp-JupyterIcon {
+ background-image: var(--jp-icon-jupyter);
+}
+
+.jp-JupyterlabWordmarkIcon {
+ background-image: var(--jp-icon-jupyterlab-wordmark);
+}
+
+.jp-KernelIcon {
+ background-image: var(--jp-icon-kernel);
+}
+
+.jp-KeyboardIcon {
+ background-image: var(--jp-icon-keyboard);
+}
+
+.jp-LaunchIcon {
+ background-image: var(--jp-icon-launch);
+}
+
+.jp-LauncherIcon {
+ background-image: var(--jp-icon-launcher);
+}
+
+.jp-LineFormIcon {
+ background-image: var(--jp-icon-line-form);
+}
+
+.jp-LinkIcon {
+ background-image: var(--jp-icon-link);
+}
+
+.jp-ListIcon {
+ background-image: var(--jp-icon-list);
+}
+
+.jp-MarkdownIcon {
+ background-image: var(--jp-icon-markdown);
+}
+
+.jp-MoveDownIcon {
+ background-image: var(--jp-icon-move-down);
+}
+
+.jp-MoveUpIcon {
+ background-image: var(--jp-icon-move-up);
+}
+
+.jp-NewFolderIcon {
+ background-image: var(--jp-icon-new-folder);
+}
+
+.jp-NotTrustedIcon {
+ background-image: var(--jp-icon-not-trusted);
+}
+
+.jp-NotebookIcon {
+ background-image: var(--jp-icon-notebook);
+}
+
+.jp-NumberingIcon {
+ background-image: var(--jp-icon-numbering);
+}
+
+.jp-OfflineBoltIcon {
+ background-image: var(--jp-icon-offline-bolt);
+}
+
+.jp-PaletteIcon {
+ background-image: var(--jp-icon-palette);
+}
+
+.jp-PasteIcon {
+ background-image: var(--jp-icon-paste);
+}
+
+.jp-PdfIcon {
+ background-image: var(--jp-icon-pdf);
+}
+
+.jp-PythonIcon {
+ background-image: var(--jp-icon-python);
+}
+
+.jp-RKernelIcon {
+ background-image: var(--jp-icon-r-kernel);
+}
+
+.jp-ReactIcon {
+ background-image: var(--jp-icon-react);
+}
+
+.jp-RedoIcon {
+ background-image: var(--jp-icon-redo);
+}
+
+.jp-RefreshIcon {
+ background-image: var(--jp-icon-refresh);
+}
+
+.jp-RegexIcon {
+ background-image: var(--jp-icon-regex);
+}
+
+.jp-RunIcon {
+ background-image: var(--jp-icon-run);
+}
+
+.jp-RunningIcon {
+ background-image: var(--jp-icon-running);
+}
+
+.jp-SaveIcon {
+ background-image: var(--jp-icon-save);
+}
+
+.jp-SearchIcon {
+ background-image: var(--jp-icon-search);
+}
+
+.jp-SettingsIcon {
+ background-image: var(--jp-icon-settings);
+}
+
+.jp-ShareIcon {
+ background-image: var(--jp-icon-share);
+}
+
+.jp-SpreadsheetIcon {
+ background-image: var(--jp-icon-spreadsheet);
+}
+
+.jp-StopIcon {
+ background-image: var(--jp-icon-stop);
+}
+
+.jp-TabIcon {
+ background-image: var(--jp-icon-tab);
+}
+
+.jp-TableRowsIcon {
+ background-image: var(--jp-icon-table-rows);
+}
+
+.jp-TagIcon {
+ background-image: var(--jp-icon-tag);
+}
+
+.jp-TerminalIcon {
+ background-image: var(--jp-icon-terminal);
+}
+
+.jp-TextEditorIcon {
+ background-image: var(--jp-icon-text-editor);
+}
+
+.jp-TocIcon {
+ background-image: var(--jp-icon-toc);
+}
+
+.jp-TreeViewIcon {
+ background-image: var(--jp-icon-tree-view);
+}
+
+.jp-TrustedIcon {
+ background-image: var(--jp-icon-trusted);
+}
+
+.jp-UndoIcon {
+ background-image: var(--jp-icon-undo);
+}
+
+.jp-UserIcon {
+ background-image: var(--jp-icon-user);
+}
+
+.jp-UsersIcon {
+ background-image: var(--jp-icon-users);
+}
+
+.jp-VegaIcon {
+ background-image: var(--jp-icon-vega);
+}
+
+.jp-WordIcon {
+ background-image: var(--jp-icon-word);
+}
+
+.jp-YamlIcon {
+ background-image: var(--jp-icon-yaml);
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/**
+ * (DEPRECATED) Support for consuming icons as CSS background images
+ */
+
+.jp-Icon,
+.jp-MaterialIcon {
+ background-position: center;
+ background-repeat: no-repeat;
+ background-size: 16px;
+ min-width: 16px;
+ min-height: 16px;
+}
+
+.jp-Icon-cover {
+ background-position: center;
+ background-repeat: no-repeat;
+ background-size: cover;
+}
+
+/**
+ * (DEPRECATED) Support for specific CSS icon sizes
+ */
+
+.jp-Icon-16 {
+ background-size: 16px;
+ min-width: 16px;
+ min-height: 16px;
+}
+
+.jp-Icon-18 {
+ background-size: 18px;
+ min-width: 18px;
+ min-height: 18px;
+}
+
+.jp-Icon-20 {
+ background-size: 20px;
+ min-width: 20px;
+ min-height: 20px;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.lm-TabBar .lm-TabBar-addButton {
+ align-items: center;
+ display: flex;
+ padding: 4px;
+ padding-bottom: 5px;
+ margin-right: 1px;
+ background-color: var(--jp-layout-color2);
+}
+
+.lm-TabBar .lm-TabBar-addButton:hover {
+ background-color: var(--jp-layout-color1);
+}
+
+.lm-DockPanel-tabBar .lm-TabBar-tab {
+ width: var(--jp-private-horizontal-tab-width);
+}
+
+.lm-DockPanel-tabBar .lm-TabBar-content {
+ flex: unset;
+}
+
+.lm-DockPanel-tabBar[data-orientation='horizontal'] {
+ flex: 1 1 auto;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/**
+ * Support for icons as inline SVG HTMLElements
+ */
+
+/* recolor the primary elements of an icon */
+.jp-icon0[fill] {
+ fill: var(--jp-inverse-layout-color0);
+}
+
+.jp-icon1[fill] {
+ fill: var(--jp-inverse-layout-color1);
+}
+
+.jp-icon2[fill] {
+ fill: var(--jp-inverse-layout-color2);
+}
+
+.jp-icon3[fill] {
+ fill: var(--jp-inverse-layout-color3);
+}
+
+.jp-icon4[fill] {
+ fill: var(--jp-inverse-layout-color4);
+}
+
+.jp-icon0[stroke] {
+ stroke: var(--jp-inverse-layout-color0);
+}
+
+.jp-icon1[stroke] {
+ stroke: var(--jp-inverse-layout-color1);
+}
+
+.jp-icon2[stroke] {
+ stroke: var(--jp-inverse-layout-color2);
+}
+
+.jp-icon3[stroke] {
+ stroke: var(--jp-inverse-layout-color3);
+}
+
+.jp-icon4[stroke] {
+ stroke: var(--jp-inverse-layout-color4);
+}
+
+/* recolor the accent elements of an icon */
+.jp-icon-accent0[fill] {
+ fill: var(--jp-layout-color0);
+}
+
+.jp-icon-accent1[fill] {
+ fill: var(--jp-layout-color1);
+}
+
+.jp-icon-accent2[fill] {
+ fill: var(--jp-layout-color2);
+}
+
+.jp-icon-accent3[fill] {
+ fill: var(--jp-layout-color3);
+}
+
+.jp-icon-accent4[fill] {
+ fill: var(--jp-layout-color4);
+}
+
+.jp-icon-accent0[stroke] {
+ stroke: var(--jp-layout-color0);
+}
+
+.jp-icon-accent1[stroke] {
+ stroke: var(--jp-layout-color1);
+}
+
+.jp-icon-accent2[stroke] {
+ stroke: var(--jp-layout-color2);
+}
+
+.jp-icon-accent3[stroke] {
+ stroke: var(--jp-layout-color3);
+}
+
+.jp-icon-accent4[stroke] {
+ stroke: var(--jp-layout-color4);
+}
+
+/* set the color of an icon to transparent */
+.jp-icon-none[fill] {
+ fill: none;
+}
+
+.jp-icon-none[stroke] {
+ stroke: none;
+}
+
+/* brand icon colors. Same for light and dark */
+.jp-icon-brand0[fill] {
+ fill: var(--jp-brand-color0);
+}
+
+.jp-icon-brand1[fill] {
+ fill: var(--jp-brand-color1);
+}
+
+.jp-icon-brand2[fill] {
+ fill: var(--jp-brand-color2);
+}
+
+.jp-icon-brand3[fill] {
+ fill: var(--jp-brand-color3);
+}
+
+.jp-icon-brand4[fill] {
+ fill: var(--jp-brand-color4);
+}
+
+.jp-icon-brand0[stroke] {
+ stroke: var(--jp-brand-color0);
+}
+
+.jp-icon-brand1[stroke] {
+ stroke: var(--jp-brand-color1);
+}
+
+.jp-icon-brand2[stroke] {
+ stroke: var(--jp-brand-color2);
+}
+
+.jp-icon-brand3[stroke] {
+ stroke: var(--jp-brand-color3);
+}
+
+.jp-icon-brand4[stroke] {
+ stroke: var(--jp-brand-color4);
+}
+
+/* warn icon colors. Same for light and dark */
+.jp-icon-warn0[fill] {
+ fill: var(--jp-warn-color0);
+}
+
+.jp-icon-warn1[fill] {
+ fill: var(--jp-warn-color1);
+}
+
+.jp-icon-warn2[fill] {
+ fill: var(--jp-warn-color2);
+}
+
+.jp-icon-warn3[fill] {
+ fill: var(--jp-warn-color3);
+}
+
+.jp-icon-warn0[stroke] {
+ stroke: var(--jp-warn-color0);
+}
+
+.jp-icon-warn1[stroke] {
+ stroke: var(--jp-warn-color1);
+}
+
+.jp-icon-warn2[stroke] {
+ stroke: var(--jp-warn-color2);
+}
+
+.jp-icon-warn3[stroke] {
+ stroke: var(--jp-warn-color3);
+}
+
+/* icon colors that contrast well with each other and most backgrounds */
+.jp-icon-contrast0[fill] {
+ fill: var(--jp-icon-contrast-color0);
+}
+
+.jp-icon-contrast1[fill] {
+ fill: var(--jp-icon-contrast-color1);
+}
+
+.jp-icon-contrast2[fill] {
+ fill: var(--jp-icon-contrast-color2);
+}
+
+.jp-icon-contrast3[fill] {
+ fill: var(--jp-icon-contrast-color3);
+}
+
+.jp-icon-contrast0[stroke] {
+ stroke: var(--jp-icon-contrast-color0);
+}
+
+.jp-icon-contrast1[stroke] {
+ stroke: var(--jp-icon-contrast-color1);
+}
+
+.jp-icon-contrast2[stroke] {
+ stroke: var(--jp-icon-contrast-color2);
+}
+
+.jp-icon-contrast3[stroke] {
+ stroke: var(--jp-icon-contrast-color3);
+}
+
+.jp-icon-dot[fill] {
+ fill: var(--jp-warn-color0);
+}
+
+.jp-jupyter-icon-color[fill] {
+ fill: var(--jp-jupyter-icon-color, var(--jp-warn-color0));
+}
+
+.jp-notebook-icon-color[fill] {
+ fill: var(--jp-notebook-icon-color, var(--jp-warn-color0));
+}
+
+.jp-json-icon-color[fill] {
+ fill: var(--jp-json-icon-color, var(--jp-warn-color1));
+}
+
+.jp-console-icon-color[fill] {
+ fill: var(--jp-console-icon-color, white);
+}
+
+.jp-console-icon-background-color[fill] {
+ fill: var(--jp-console-icon-background-color, var(--jp-brand-color1));
+}
+
+.jp-terminal-icon-color[fill] {
+ fill: var(--jp-terminal-icon-color, var(--jp-layout-color2));
+}
+
+.jp-terminal-icon-background-color[fill] {
+ fill: var(
+ --jp-terminal-icon-background-color,
+ var(--jp-inverse-layout-color2)
+ );
+}
+
+.jp-text-editor-icon-color[fill] {
+ fill: var(--jp-text-editor-icon-color, var(--jp-inverse-layout-color3));
+}
+
+.jp-inspector-icon-color[fill] {
+ fill: var(--jp-inspector-icon-color, var(--jp-inverse-layout-color3));
+}
+
+/* CSS for icons in selected filebrowser listing items */
+.jp-DirListing-item.jp-mod-selected .jp-icon-selectable[fill] {
+ fill: #fff;
+}
+
+.jp-DirListing-item.jp-mod-selected .jp-icon-selectable-inverse[fill] {
+ fill: var(--jp-brand-color1);
+}
+
+/* stylelint-disable selector-max-class, selector-max-compound-selectors */
+
+/**
+* TODO: come up with non css-hack solution for showing the busy icon on top
+* of the close icon
+* CSS for complex behavior of close icon of tabs in the main area tabbar
+*/
+.lm-DockPanel-tabBar
+ .lm-TabBar-tab.lm-mod-closable.jp-mod-dirty
+ > .lm-TabBar-tabCloseIcon
+ > :not(:hover)
+ > .jp-icon3[fill] {
+ fill: none;
+}
+
+.lm-DockPanel-tabBar
+ .lm-TabBar-tab.lm-mod-closable.jp-mod-dirty
+ > .lm-TabBar-tabCloseIcon
+ > :not(:hover)
+ > .jp-icon-busy[fill] {
+ fill: var(--jp-inverse-layout-color3);
+}
+
+/* stylelint-enable selector-max-class, selector-max-compound-selectors */
+
+/* CSS for icons in status bar */
+#jp-main-statusbar .jp-mod-selected .jp-icon-selectable[fill] {
+ fill: #fff;
+}
+
+#jp-main-statusbar .jp-mod-selected .jp-icon-selectable-inverse[fill] {
+ fill: var(--jp-brand-color1);
+}
+
+/* special handling for splash icon CSS. While the theme CSS reloads during
+ splash, the splash icon can loose theming. To prevent that, we set a
+ default for its color variable */
+:root {
+ --jp-warn-color0: var(--md-orange-700);
+}
+
+/* not sure what to do with this one, used in filebrowser listing */
+.jp-DragIcon {
+ margin-right: 4px;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/**
+ * Support for alt colors for icons as inline SVG HTMLElements
+ */
+
+/* alt recolor the primary elements of an icon */
+.jp-icon-alt .jp-icon0[fill] {
+ fill: var(--jp-layout-color0);
+}
+
+.jp-icon-alt .jp-icon1[fill] {
+ fill: var(--jp-layout-color1);
+}
+
+.jp-icon-alt .jp-icon2[fill] {
+ fill: var(--jp-layout-color2);
+}
+
+.jp-icon-alt .jp-icon3[fill] {
+ fill: var(--jp-layout-color3);
+}
+
+.jp-icon-alt .jp-icon4[fill] {
+ fill: var(--jp-layout-color4);
+}
+
+.jp-icon-alt .jp-icon0[stroke] {
+ stroke: var(--jp-layout-color0);
+}
+
+.jp-icon-alt .jp-icon1[stroke] {
+ stroke: var(--jp-layout-color1);
+}
+
+.jp-icon-alt .jp-icon2[stroke] {
+ stroke: var(--jp-layout-color2);
+}
+
+.jp-icon-alt .jp-icon3[stroke] {
+ stroke: var(--jp-layout-color3);
+}
+
+.jp-icon-alt .jp-icon4[stroke] {
+ stroke: var(--jp-layout-color4);
+}
+
+/* alt recolor the accent elements of an icon */
+.jp-icon-alt .jp-icon-accent0[fill] {
+ fill: var(--jp-inverse-layout-color0);
+}
+
+.jp-icon-alt .jp-icon-accent1[fill] {
+ fill: var(--jp-inverse-layout-color1);
+}
+
+.jp-icon-alt .jp-icon-accent2[fill] {
+ fill: var(--jp-inverse-layout-color2);
+}
+
+.jp-icon-alt .jp-icon-accent3[fill] {
+ fill: var(--jp-inverse-layout-color3);
+}
+
+.jp-icon-alt .jp-icon-accent4[fill] {
+ fill: var(--jp-inverse-layout-color4);
+}
+
+.jp-icon-alt .jp-icon-accent0[stroke] {
+ stroke: var(--jp-inverse-layout-color0);
+}
+
+.jp-icon-alt .jp-icon-accent1[stroke] {
+ stroke: var(--jp-inverse-layout-color1);
+}
+
+.jp-icon-alt .jp-icon-accent2[stroke] {
+ stroke: var(--jp-inverse-layout-color2);
+}
+
+.jp-icon-alt .jp-icon-accent3[stroke] {
+ stroke: var(--jp-inverse-layout-color3);
+}
+
+.jp-icon-alt .jp-icon-accent4[stroke] {
+ stroke: var(--jp-inverse-layout-color4);
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-icon-hoverShow:not(:hover) .jp-icon-hoverShow-content {
+ display: none !important;
+}
+
+/**
+ * Support for hover colors for icons as inline SVG HTMLElements
+ */
+
+/**
+ * regular colors
+ */
+
+/* recolor the primary elements of an icon */
+.jp-icon-hover :hover .jp-icon0-hover[fill] {
+ fill: var(--jp-inverse-layout-color0);
+}
+
+.jp-icon-hover :hover .jp-icon1-hover[fill] {
+ fill: var(--jp-inverse-layout-color1);
+}
+
+.jp-icon-hover :hover .jp-icon2-hover[fill] {
+ fill: var(--jp-inverse-layout-color2);
+}
+
+.jp-icon-hover :hover .jp-icon3-hover[fill] {
+ fill: var(--jp-inverse-layout-color3);
+}
+
+.jp-icon-hover :hover .jp-icon4-hover[fill] {
+ fill: var(--jp-inverse-layout-color4);
+}
+
+.jp-icon-hover :hover .jp-icon0-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color0);
+}
+
+.jp-icon-hover :hover .jp-icon1-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color1);
+}
+
+.jp-icon-hover :hover .jp-icon2-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color2);
+}
+
+.jp-icon-hover :hover .jp-icon3-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color3);
+}
+
+.jp-icon-hover :hover .jp-icon4-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color4);
+}
+
+/* recolor the accent elements of an icon */
+.jp-icon-hover :hover .jp-icon-accent0-hover[fill] {
+ fill: var(--jp-layout-color0);
+}
+
+.jp-icon-hover :hover .jp-icon-accent1-hover[fill] {
+ fill: var(--jp-layout-color1);
+}
+
+.jp-icon-hover :hover .jp-icon-accent2-hover[fill] {
+ fill: var(--jp-layout-color2);
+}
+
+.jp-icon-hover :hover .jp-icon-accent3-hover[fill] {
+ fill: var(--jp-layout-color3);
+}
+
+.jp-icon-hover :hover .jp-icon-accent4-hover[fill] {
+ fill: var(--jp-layout-color4);
+}
+
+.jp-icon-hover :hover .jp-icon-accent0-hover[stroke] {
+ stroke: var(--jp-layout-color0);
+}
+
+.jp-icon-hover :hover .jp-icon-accent1-hover[stroke] {
+ stroke: var(--jp-layout-color1);
+}
+
+.jp-icon-hover :hover .jp-icon-accent2-hover[stroke] {
+ stroke: var(--jp-layout-color2);
+}
+
+.jp-icon-hover :hover .jp-icon-accent3-hover[stroke] {
+ stroke: var(--jp-layout-color3);
+}
+
+.jp-icon-hover :hover .jp-icon-accent4-hover[stroke] {
+ stroke: var(--jp-layout-color4);
+}
+
+/* set the color of an icon to transparent */
+.jp-icon-hover :hover .jp-icon-none-hover[fill] {
+ fill: none;
+}
+
+.jp-icon-hover :hover .jp-icon-none-hover[stroke] {
+ stroke: none;
+}
+
+/**
+ * inverse colors
+ */
+
+/* inverse recolor the primary elements of an icon */
+.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[fill] {
+ fill: var(--jp-layout-color0);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[fill] {
+ fill: var(--jp-layout-color1);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[fill] {
+ fill: var(--jp-layout-color2);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[fill] {
+ fill: var(--jp-layout-color3);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[fill] {
+ fill: var(--jp-layout-color4);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon0-hover[stroke] {
+ stroke: var(--jp-layout-color0);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon1-hover[stroke] {
+ stroke: var(--jp-layout-color1);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon2-hover[stroke] {
+ stroke: var(--jp-layout-color2);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon3-hover[stroke] {
+ stroke: var(--jp-layout-color3);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon4-hover[stroke] {
+ stroke: var(--jp-layout-color4);
+}
+
+/* inverse recolor the accent elements of an icon */
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[fill] {
+ fill: var(--jp-inverse-layout-color0);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[fill] {
+ fill: var(--jp-inverse-layout-color1);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[fill] {
+ fill: var(--jp-inverse-layout-color2);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[fill] {
+ fill: var(--jp-inverse-layout-color3);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[fill] {
+ fill: var(--jp-inverse-layout-color4);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent0-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color0);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent1-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color1);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent2-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color2);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent3-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color3);
+}
+
+.jp-icon-hover.jp-icon-alt :hover .jp-icon-accent4-hover[stroke] {
+ stroke: var(--jp-inverse-layout-color4);
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-IFrame {
+ width: 100%;
+ height: 100%;
+}
+
+.jp-IFrame > iframe {
+ border: none;
+}
+
+/*
+When drag events occur, `lm-mod-override-cursor` is added to the body.
+Because iframes steal all cursor events, the following two rules are necessary
+to suppress pointer events while resize drags are occurring. There may be a
+better solution to this problem.
+*/
+body.lm-mod-override-cursor .jp-IFrame {
+ position: relative;
+}
+
+body.lm-mod-override-cursor .jp-IFrame::before {
+ content: '';
+ position: absolute;
+ top: 0;
+ left: 0;
+ right: 0;
+ bottom: 0;
+ background: transparent;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) 2014-2016, Jupyter Development Team.
+|
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-HoverBox {
+ position: fixed;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-FormGroup-content fieldset {
+ border: none;
+ padding: 0;
+ min-width: 0;
+ width: 100%;
+}
+
+/* stylelint-disable selector-max-type */
+
+.jp-FormGroup-content fieldset .jp-inputFieldWrapper input,
+.jp-FormGroup-content fieldset .jp-inputFieldWrapper select,
+.jp-FormGroup-content fieldset .jp-inputFieldWrapper textarea {
+ font-size: var(--jp-content-font-size2);
+ border-color: var(--jp-input-border-color);
+ border-style: solid;
+ border-radius: var(--jp-border-radius);
+ border-width: 1px;
+ padding: 6px 8px;
+ background: none;
+ color: var(--jp-ui-font-color0);
+ height: inherit;
+}
+
+.jp-FormGroup-content fieldset input[type='checkbox'] {
+ position: relative;
+ top: 2px;
+ margin-left: 0;
+}
+
+.jp-FormGroup-content button.jp-mod-styled {
+ cursor: pointer;
+}
+
+.jp-FormGroup-content .checkbox label {
+ cursor: pointer;
+ font-size: var(--jp-content-font-size1);
+}
+
+.jp-FormGroup-content .jp-root > fieldset > legend {
+ display: none;
+}
+
+.jp-FormGroup-content .jp-root > fieldset > p {
+ display: none;
+}
+
+/** copy of `input.jp-mod-styled:focus` style */
+.jp-FormGroup-content fieldset input:focus,
+.jp-FormGroup-content fieldset select:focus {
+ -moz-outline-radius: unset;
+ outline: var(--jp-border-width) solid var(--md-blue-500);
+ outline-offset: -1px;
+ box-shadow: inset 0 0 4px var(--md-blue-300);
+}
+
+.jp-FormGroup-content fieldset input:hover:not(:focus),
+.jp-FormGroup-content fieldset select:hover:not(:focus) {
+ background-color: var(--jp-border-color2);
+}
+
+/* stylelint-enable selector-max-type */
+
+.jp-FormGroup-content .checkbox .field-description {
+ /* Disable default description field for checkbox:
+ because other widgets do not have description fields,
+ we add descriptions to each widget on the field level.
+ */
+ display: none;
+}
+
+.jp-FormGroup-content #root__description {
+ display: none;
+}
+
+.jp-FormGroup-content .jp-modifiedIndicator {
+ width: 5px;
+ background-color: var(--jp-brand-color2);
+ margin-top: 0;
+ margin-left: calc(var(--jp-private-settingeditor-modifier-indent) * -1);
+ flex-shrink: 0;
+}
+
+.jp-FormGroup-content .jp-modifiedIndicator.jp-errorIndicator {
+ background-color: var(--jp-error-color0);
+ margin-right: 0.5em;
+}
+
+/* RJSF ARRAY style */
+
+.jp-arrayFieldWrapper legend {
+ font-size: var(--jp-content-font-size2);
+ color: var(--jp-ui-font-color0);
+ flex-basis: 100%;
+ padding: 4px 0;
+ font-weight: var(--jp-content-heading-font-weight);
+ border-bottom: 1px solid var(--jp-border-color2);
+}
+
+.jp-arrayFieldWrapper .field-description {
+ padding: 4px 0;
+ white-space: pre-wrap;
+}
+
+.jp-arrayFieldWrapper .array-item {
+ width: 100%;
+ border: 1px solid var(--jp-border-color2);
+ border-radius: 4px;
+ margin: 4px;
+}
+
+.jp-ArrayOperations {
+ display: flex;
+ margin-left: 8px;
+}
+
+.jp-ArrayOperationsButton {
+ margin: 2px;
+}
+
+.jp-ArrayOperationsButton .jp-icon3[fill] {
+ fill: var(--jp-ui-font-color0);
+}
+
+button.jp-ArrayOperationsButton.jp-mod-styled:disabled {
+ cursor: not-allowed;
+ opacity: 0.5;
+}
+
+/* RJSF form validation error */
+
+.jp-FormGroup-content .validationErrors {
+ color: var(--jp-error-color0);
+}
+
+/* Hide panel level error as duplicated the field level error */
+.jp-FormGroup-content .panel.errors {
+ display: none;
+}
+
+/* RJSF normal content (settings-editor) */
+
+.jp-FormGroup-contentNormal {
+ display: flex;
+ align-items: center;
+ flex-wrap: wrap;
+}
+
+.jp-FormGroup-contentNormal .jp-FormGroup-contentItem {
+ margin-left: 7px;
+ color: var(--jp-ui-font-color0);
+}
+
+.jp-FormGroup-contentNormal .jp-FormGroup-description {
+ flex-basis: 100%;
+ padding: 4px 7px;
+}
+
+.jp-FormGroup-contentNormal .jp-FormGroup-default {
+ flex-basis: 100%;
+ padding: 4px 7px;
+}
+
+.jp-FormGroup-contentNormal .jp-FormGroup-fieldLabel {
+ font-size: var(--jp-content-font-size1);
+ font-weight: normal;
+ min-width: 120px;
+}
+
+.jp-FormGroup-contentNormal fieldset:not(:first-child) {
+ margin-left: 7px;
+}
+
+.jp-FormGroup-contentNormal .field-array-of-string .array-item {
+ /* Display `jp-ArrayOperations` buttons side-by-side with content except
+ for small screens where flex-wrap will place them one below the other.
+ */
+ display: flex;
+ align-items: center;
+ flex-wrap: wrap;
+}
+
+.jp-FormGroup-contentNormal .jp-objectFieldWrapper .form-group {
+ padding: 2px 8px 2px var(--jp-private-settingeditor-modifier-indent);
+ margin-top: 2px;
+}
+
+/* RJSF compact content (metadata-form) */
+
+.jp-FormGroup-content.jp-FormGroup-contentCompact {
+ width: 100%;
+}
+
+.jp-FormGroup-contentCompact .form-group {
+ display: flex;
+ padding: 0.5em 0.2em 0.5em 0;
+}
+
+.jp-FormGroup-contentCompact
+ .jp-FormGroup-compactTitle
+ .jp-FormGroup-description {
+ font-size: var(--jp-ui-font-size1);
+ color: var(--jp-ui-font-color2);
+}
+
+.jp-FormGroup-contentCompact .jp-FormGroup-fieldLabel {
+ padding-bottom: 0.3em;
+}
+
+.jp-FormGroup-contentCompact .jp-inputFieldWrapper .form-control {
+ width: 100%;
+ box-sizing: border-box;
+}
+
+.jp-FormGroup-contentCompact .jp-arrayFieldWrapper .jp-FormGroup-compactTitle {
+ padding-bottom: 7px;
+}
+
+.jp-FormGroup-contentCompact
+ .jp-objectFieldWrapper
+ .jp-objectFieldWrapper
+ .form-group {
+ padding: 2px 8px 2px var(--jp-private-settingeditor-modifier-indent);
+ margin-top: 2px;
+}
+
+.jp-FormGroup-contentCompact ul.error-detail {
+ margin-block-start: 0.5em;
+ margin-block-end: 0.5em;
+ padding-inline-start: 1em;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+.jp-SidePanel {
+ display: flex;
+ flex-direction: column;
+ min-width: var(--jp-sidebar-min-width);
+ overflow-y: auto;
+ color: var(--jp-ui-font-color1);
+ background: var(--jp-layout-color1);
+ font-size: var(--jp-ui-font-size1);
+}
+
+.jp-SidePanel-header {
+ flex: 0 0 auto;
+ display: flex;
+ border-bottom: var(--jp-border-width) solid var(--jp-border-color2);
+ font-size: var(--jp-ui-font-size0);
+ font-weight: 600;
+ letter-spacing: 1px;
+ margin: 0;
+ padding: 2px;
+ text-transform: uppercase;
+}
+
+.jp-SidePanel-toolbar {
+ flex: 0 0 auto;
+}
+
+.jp-SidePanel-content {
+ flex: 1 1 auto;
+}
+
+.jp-SidePanel-toolbar,
+.jp-AccordionPanel-toolbar {
+ height: var(--jp-private-toolbar-height);
+}
+
+.jp-SidePanel-toolbar.jp-Toolbar-micro {
+ display: none;
+}
+
+.lm-AccordionPanel .jp-AccordionPanel-title {
+ box-sizing: border-box;
+ line-height: 25px;
+ margin: 0;
+ display: flex;
+ align-items: center;
+ background: var(--jp-layout-color1);
+ color: var(--jp-ui-font-color1);
+ border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
+ box-shadow: var(--jp-toolbar-box-shadow);
+ font-size: var(--jp-ui-font-size0);
+}
+
+.jp-AccordionPanel-title {
+ cursor: pointer;
+ user-select: none;
+ -moz-user-select: none;
+ -webkit-user-select: none;
+ text-transform: uppercase;
+}
+
+.lm-AccordionPanel[data-orientation='horizontal'] > .jp-AccordionPanel-title {
+ /* Title is rotated for horizontal accordion panel using CSS */
+ display: block;
+ transform-origin: top left;
+ transform: rotate(-90deg) translate(-100%);
+}
+
+.jp-AccordionPanel-title .lm-AccordionPanel-titleLabel {
+ user-select: none;
+ text-overflow: ellipsis;
+ white-space: nowrap;
+ overflow: hidden;
+}
+
+.jp-AccordionPanel-title .lm-AccordionPanel-titleCollapser {
+ transform: rotate(-90deg);
+ margin: auto 0;
+ height: 16px;
+}
+
+.jp-AccordionPanel-title.lm-mod-expanded .lm-AccordionPanel-titleCollapser {
+ transform: rotate(0deg);
+}
+
+.lm-AccordionPanel .jp-AccordionPanel-toolbar {
+ background: none;
+ box-shadow: none;
+ border: none;
+ margin-left: auto;
+}
+
+.lm-AccordionPanel .lm-SplitPanel-handle:hover {
+ background: var(--jp-layout-color3);
+}
+
+.jp-text-truncated {
+ overflow: hidden;
+ text-overflow: ellipsis;
+ white-space: nowrap;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) 2017, Jupyter Development Team.
+|
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-Spinner {
+ position: absolute;
+ display: flex;
+ justify-content: center;
+ align-items: center;
+ z-index: 10;
+ left: 0;
+ top: 0;
+ width: 100%;
+ height: 100%;
+ background: var(--jp-layout-color0);
+ outline: none;
+}
+
+.jp-SpinnerContent {
+ font-size: 10px;
+ margin: 50px auto;
+ text-indent: -9999em;
+ width: 3em;
+ height: 3em;
+ border-radius: 50%;
+ background: var(--jp-brand-color3);
+ background: linear-gradient(
+ to right,
+ #f37626 10%,
+ rgba(255, 255, 255, 0) 42%
+ );
+ position: relative;
+ animation: load3 1s infinite linear, fadeIn 1s;
+}
+
+.jp-SpinnerContent::before {
+ width: 50%;
+ height: 50%;
+ background: #f37626;
+ border-radius: 100% 0 0;
+ position: absolute;
+ top: 0;
+ left: 0;
+ content: '';
+}
+
+.jp-SpinnerContent::after {
+ background: var(--jp-layout-color0);
+ width: 75%;
+ height: 75%;
+ border-radius: 50%;
+ content: '';
+ margin: auto;
+ position: absolute;
+ top: 0;
+ left: 0;
+ bottom: 0;
+ right: 0;
+}
+
+@keyframes fadeIn {
+ 0% {
+ opacity: 0;
+ }
+
+ 100% {
+ opacity: 1;
+ }
+}
+
+@keyframes load3 {
+ 0% {
+ transform: rotate(0deg);
+ }
+
+ 100% {
+ transform: rotate(360deg);
+ }
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) 2014-2017, Jupyter Development Team.
+|
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+button.jp-mod-styled {
+ font-size: var(--jp-ui-font-size1);
+ color: var(--jp-ui-font-color0);
+ border: none;
+ box-sizing: border-box;
+ text-align: center;
+ line-height: 32px;
+ height: 32px;
+ padding: 0 12px;
+ letter-spacing: 0.8px;
+ outline: none;
+ appearance: none;
+ -webkit-appearance: none;
+ -moz-appearance: none;
+}
+
+input.jp-mod-styled {
+ background: var(--jp-input-background);
+ height: 28px;
+ box-sizing: border-box;
+ border: var(--jp-border-width) solid var(--jp-border-color1);
+ padding-left: 7px;
+ padding-right: 7px;
+ font-size: var(--jp-ui-font-size2);
+ color: var(--jp-ui-font-color0);
+ outline: none;
+ appearance: none;
+ -webkit-appearance: none;
+ -moz-appearance: none;
+}
+
+input[type='checkbox'].jp-mod-styled {
+ appearance: checkbox;
+ -webkit-appearance: checkbox;
+ -moz-appearance: checkbox;
+ height: auto;
+}
+
+input.jp-mod-styled:focus {
+ border: var(--jp-border-width) solid var(--md-blue-500);
+ box-shadow: inset 0 0 4px var(--md-blue-300);
+}
+
+.jp-select-wrapper {
+ display: flex;
+ position: relative;
+ flex-direction: column;
+ padding: 1px;
+ background-color: var(--jp-layout-color1);
+ box-sizing: border-box;
+ margin-bottom: 12px;
+}
+
+.jp-select-wrapper:not(.multiple) {
+ height: 28px;
+}
+
+.jp-select-wrapper.jp-mod-focused select.jp-mod-styled {
+ border: var(--jp-border-width) solid var(--jp-input-active-border-color);
+ box-shadow: var(--jp-input-box-shadow);
+ background-color: var(--jp-input-active-background);
+}
+
+select.jp-mod-styled:hover {
+ cursor: pointer;
+ color: var(--jp-ui-font-color0);
+ background-color: var(--jp-input-hover-background);
+ box-shadow: inset 0 0 1px rgba(0, 0, 0, 0.5);
+}
+
+select.jp-mod-styled {
+ flex: 1 1 auto;
+ width: 100%;
+ font-size: var(--jp-ui-font-size2);
+ background: var(--jp-input-background);
+ color: var(--jp-ui-font-color0);
+ padding: 0 25px 0 8px;
+ border: var(--jp-border-width) solid var(--jp-input-border-color);
+ border-radius: 0;
+ outline: none;
+ appearance: none;
+ -webkit-appearance: none;
+ -moz-appearance: none;
+}
+
+select.jp-mod-styled:not([multiple]) {
+ height: 32px;
+}
+
+select.jp-mod-styled[multiple] {
+ max-height: 200px;
+ overflow-y: auto;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-switch {
+ display: flex;
+ align-items: center;
+ padding-left: 4px;
+ padding-right: 4px;
+ font-size: var(--jp-ui-font-size1);
+ background-color: transparent;
+ color: var(--jp-ui-font-color1);
+ border: none;
+ height: 20px;
+}
+
+.jp-switch:hover {
+ background-color: var(--jp-layout-color2);
+}
+
+.jp-switch-label {
+ margin-right: 5px;
+ font-family: var(--jp-ui-font-family);
+}
+
+.jp-switch-track {
+ cursor: pointer;
+ background-color: var(--jp-switch-color, var(--jp-border-color1));
+ -webkit-transition: 0.4s;
+ transition: 0.4s;
+ border-radius: 34px;
+ height: 16px;
+ width: 35px;
+ position: relative;
+}
+
+.jp-switch-track::before {
+ content: '';
+ position: absolute;
+ height: 10px;
+ width: 10px;
+ margin: 3px;
+ left: 0;
+ background-color: var(--jp-ui-inverse-font-color1);
+ -webkit-transition: 0.4s;
+ transition: 0.4s;
+ border-radius: 50%;
+}
+
+.jp-switch[aria-checked='true'] .jp-switch-track {
+ background-color: var(--jp-switch-true-position-color, var(--jp-warn-color0));
+}
+
+.jp-switch[aria-checked='true'] .jp-switch-track::before {
+ /* track width (35) - margins (3 + 3) - thumb width (10) */
+ left: 19px;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) 2014-2016, Jupyter Development Team.
+|
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+:root {
+ --jp-private-toolbar-height: calc(
+ 28px + var(--jp-border-width)
+ ); /* leave 28px for content */
+}
+
+.jp-Toolbar {
+ color: var(--jp-ui-font-color1);
+ flex: 0 0 auto;
+ display: flex;
+ flex-direction: row;
+ border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
+ box-shadow: var(--jp-toolbar-box-shadow);
+ background: var(--jp-toolbar-background);
+ min-height: var(--jp-toolbar-micro-height);
+ padding: 2px;
+ z-index: 8;
+ overflow-x: hidden;
+}
+
+/* Toolbar items */
+
+.jp-Toolbar > .jp-Toolbar-item.jp-Toolbar-spacer {
+ flex-grow: 1;
+ flex-shrink: 1;
+}
+
+.jp-Toolbar-item.jp-Toolbar-kernelStatus {
+ display: inline-block;
+ width: 32px;
+ background-repeat: no-repeat;
+ background-position: center;
+ background-size: 16px;
+}
+
+.jp-Toolbar > .jp-Toolbar-item {
+ flex: 0 0 auto;
+ display: flex;
+ padding-left: 1px;
+ padding-right: 1px;
+ font-size: var(--jp-ui-font-size1);
+ line-height: var(--jp-private-toolbar-height);
+ height: 100%;
+}
+
+/* Toolbar buttons */
+
+/* This is the div we use to wrap the react component into a Widget */
+div.jp-ToolbarButton {
+ color: transparent;
+ border: none;
+ box-sizing: border-box;
+ outline: none;
+ appearance: none;
+ -webkit-appearance: none;
+ -moz-appearance: none;
+ padding: 0;
+ margin: 0;
+}
+
+button.jp-ToolbarButtonComponent {
+ background: var(--jp-layout-color1);
+ border: none;
+ box-sizing: border-box;
+ outline: none;
+ appearance: none;
+ -webkit-appearance: none;
+ -moz-appearance: none;
+ padding: 0 6px;
+ margin: 0;
+ height: 24px;
+ border-radius: var(--jp-border-radius);
+ display: flex;
+ align-items: center;
+ text-align: center;
+ font-size: 14px;
+ min-width: unset;
+ min-height: unset;
+}
+
+button.jp-ToolbarButtonComponent:disabled {
+ opacity: 0.4;
+}
+
+button.jp-ToolbarButtonComponent > span {
+ padding: 0;
+ flex: 0 0 auto;
+}
+
+button.jp-ToolbarButtonComponent .jp-ToolbarButtonComponent-label {
+ font-size: var(--jp-ui-font-size1);
+ line-height: 100%;
+ padding-left: 2px;
+ color: var(--jp-ui-font-color1);
+ font-family: var(--jp-ui-font-family);
+}
+
+#jp-main-dock-panel[data-mode='single-document']
+ .jp-MainAreaWidget
+ > .jp-Toolbar.jp-Toolbar-micro {
+ padding: 0;
+ min-height: 0;
+}
+
+#jp-main-dock-panel[data-mode='single-document']
+ .jp-MainAreaWidget
+ > .jp-Toolbar {
+ border: none;
+ box-shadow: none;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+.jp-WindowedPanel-outer {
+ position: relative;
+ overflow-y: auto;
+}
+
+.jp-WindowedPanel-inner {
+ position: relative;
+}
+
+.jp-WindowedPanel-window {
+ position: absolute;
+ left: 0;
+ right: 0;
+ overflow: visible;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/* Sibling imports */
+
+body {
+ color: var(--jp-ui-font-color1);
+ font-size: var(--jp-ui-font-size1);
+}
+
+/* Disable native link decoration styles everywhere outside of dialog boxes */
+a {
+ text-decoration: unset;
+ color: unset;
+}
+
+a:hover {
+ text-decoration: unset;
+ color: unset;
+}
+
+/* Accessibility for links inside dialog box text */
+.jp-Dialog-content a {
+ text-decoration: revert;
+ color: var(--jp-content-link-color);
+}
+
+.jp-Dialog-content a:hover {
+ text-decoration: revert;
+}
+
+/* Styles for ui-components */
+.jp-Button {
+ color: var(--jp-ui-font-color2);
+ border-radius: var(--jp-border-radius);
+ padding: 0 12px;
+ font-size: var(--jp-ui-font-size1);
+
+ /* Copy from blueprint 3 */
+ display: inline-flex;
+ flex-direction: row;
+ border: none;
+ cursor: pointer;
+ align-items: center;
+ justify-content: center;
+ text-align: left;
+ vertical-align: middle;
+ min-height: 30px;
+ min-width: 30px;
+}
+
+.jp-Button:disabled {
+ cursor: not-allowed;
+}
+
+.jp-Button:empty {
+ padding: 0 !important;
+}
+
+.jp-Button.jp-mod-small {
+ min-height: 24px;
+ min-width: 24px;
+ font-size: 12px;
+ padding: 0 7px;
+}
+
+/* Use our own theme for hover styles */
+.jp-Button.jp-mod-minimal:hover {
+ background-color: var(--jp-layout-color2);
+}
+
+.jp-Button.jp-mod-minimal {
+ background: none;
+}
+
+.jp-InputGroup {
+ display: block;
+ position: relative;
+}
+
+.jp-InputGroup input {
+ box-sizing: border-box;
+ border: none;
+ border-radius: 0;
+ background-color: transparent;
+ color: var(--jp-ui-font-color0);
+ box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color);
+ padding-bottom: 0;
+ padding-top: 0;
+ padding-left: 10px;
+ padding-right: 28px;
+ position: relative;
+ width: 100%;
+ -webkit-appearance: none;
+ -moz-appearance: none;
+ appearance: none;
+ font-size: 14px;
+ font-weight: 400;
+ height: 30px;
+ line-height: 30px;
+ outline: none;
+ vertical-align: middle;
+}
+
+.jp-InputGroup input:focus {
+ box-shadow: inset 0 0 0 var(--jp-border-width)
+ var(--jp-input-active-box-shadow-color),
+ inset 0 0 0 3px var(--jp-input-active-box-shadow-color);
+}
+
+.jp-InputGroup input:disabled {
+ cursor: not-allowed;
+ resize: block;
+ background-color: var(--jp-layout-color2);
+ color: var(--jp-ui-font-color2);
+}
+
+.jp-InputGroup input:disabled ~ span {
+ cursor: not-allowed;
+ color: var(--jp-ui-font-color2);
+}
+
+.jp-InputGroup input::placeholder,
+input::placeholder {
+ color: var(--jp-ui-font-color2);
+}
+
+.jp-InputGroupAction {
+ position: absolute;
+ bottom: 1px;
+ right: 0;
+ padding: 6px;
+}
+
+.jp-HTMLSelect.jp-DefaultStyle select {
+ background-color: initial;
+ border: none;
+ border-radius: 0;
+ box-shadow: none;
+ color: var(--jp-ui-font-color0);
+ display: block;
+ font-size: var(--jp-ui-font-size1);
+ font-family: var(--jp-ui-font-family);
+ height: 24px;
+ line-height: 14px;
+ padding: 0 25px 0 10px;
+ text-align: left;
+ -moz-appearance: none;
+ -webkit-appearance: none;
+}
+
+.jp-HTMLSelect.jp-DefaultStyle select:disabled {
+ background-color: var(--jp-layout-color2);
+ color: var(--jp-ui-font-color2);
+ cursor: not-allowed;
+ resize: block;
+}
+
+.jp-HTMLSelect.jp-DefaultStyle select:disabled ~ span {
+ cursor: not-allowed;
+}
+
+/* Use our own theme for hover and option styles */
+/* stylelint-disable-next-line selector-max-type */
+.jp-HTMLSelect.jp-DefaultStyle select:hover,
+.jp-HTMLSelect.jp-DefaultStyle select > option {
+ background-color: var(--jp-layout-color2);
+ color: var(--jp-ui-font-color0);
+}
+
+select {
+ box-sizing: border-box;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Styles
+|----------------------------------------------------------------------------*/
+
+.jp-StatusBar-Widget {
+ display: flex;
+ align-items: center;
+ background: var(--jp-layout-color2);
+ min-height: var(--jp-statusbar-height);
+ justify-content: space-between;
+ padding: 0 10px;
+}
+
+.jp-StatusBar-Left {
+ display: flex;
+ align-items: center;
+ flex-direction: row;
+}
+
+.jp-StatusBar-Middle {
+ display: flex;
+ align-items: center;
+}
+
+.jp-StatusBar-Right {
+ display: flex;
+ align-items: center;
+ flex-direction: row-reverse;
+}
+
+.jp-StatusBar-Item {
+ max-height: var(--jp-statusbar-height);
+ margin: 0 2px;
+ height: var(--jp-statusbar-height);
+ white-space: nowrap;
+ text-overflow: ellipsis;
+ color: var(--jp-ui-font-color1);
+ padding: 0 6px;
+}
+
+.jp-mod-highlighted:hover {
+ background-color: var(--jp-layout-color3);
+}
+
+.jp-mod-clicked {
+ background-color: var(--jp-brand-color1);
+}
+
+.jp-mod-clicked:hover {
+ background-color: var(--jp-brand-color0);
+}
+
+.jp-mod-clicked .jp-StatusBar-TextItem {
+ color: var(--jp-ui-inverse-font-color1);
+}
+
+.jp-StatusBar-HoverItem {
+ box-shadow: '0px 4px 4px rgba(0, 0, 0, 0.25)';
+}
+
+.jp-StatusBar-TextItem {
+ font-size: var(--jp-ui-font-size1);
+ font-family: var(--jp-ui-font-family);
+ line-height: 24px;
+ color: var(--jp-ui-font-color1);
+}
+
+.jp-StatusBar-GroupItem {
+ display: flex;
+ align-items: center;
+ flex-direction: row;
+}
+
+.jp-Statusbar-ProgressCircle svg {
+ display: block;
+ margin: 0 auto;
+ width: 16px;
+ height: 24px;
+ align-self: normal;
+}
+
+.jp-Statusbar-ProgressCircle path {
+ fill: var(--jp-inverse-layout-color3);
+}
+
+.jp-Statusbar-ProgressBar-progress-bar {
+ height: 10px;
+ width: 100px;
+ border: solid 0.25px var(--jp-brand-color2);
+ border-radius: 3px;
+ overflow: hidden;
+ align-self: center;
+}
+
+.jp-Statusbar-ProgressBar-progress-bar > div {
+ background-color: var(--jp-brand-color2);
+ background-image: linear-gradient(
+ -45deg,
+ rgba(255, 255, 255, 0.2) 25%,
+ transparent 25%,
+ transparent 50%,
+ rgba(255, 255, 255, 0.2) 50%,
+ rgba(255, 255, 255, 0.2) 75%,
+ transparent 75%,
+ transparent
+ );
+ background-size: 40px 40px;
+ float: left;
+ width: 0%;
+ height: 100%;
+ font-size: 12px;
+ line-height: 14px;
+ color: #fff;
+ text-align: center;
+ animation: jp-Statusbar-ExecutionTime-progress-bar 2s linear infinite;
+}
+
+.jp-Statusbar-ProgressBar-progress-bar p {
+ color: var(--jp-ui-font-color1);
+ font-family: var(--jp-ui-font-family);
+ font-size: var(--jp-ui-font-size1);
+ line-height: 10px;
+ width: 100px;
+}
+
+@keyframes jp-Statusbar-ExecutionTime-progress-bar {
+ 0% {
+ background-position: 0 0;
+ }
+
+ 100% {
+ background-position: 40px 40px;
+ }
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Variables
+|----------------------------------------------------------------------------*/
+
+:root {
+ --jp-private-commandpalette-search-height: 28px;
+}
+
+/*-----------------------------------------------------------------------------
+| Overall styles
+|----------------------------------------------------------------------------*/
+
+.lm-CommandPalette {
+ padding-bottom: 0;
+ color: var(--jp-ui-font-color1);
+ background: var(--jp-layout-color1);
+
+ /* This is needed so that all font sizing of children done in ems is
+ * relative to this base size */
+ font-size: var(--jp-ui-font-size1);
+}
+
+/*-----------------------------------------------------------------------------
+| Modal variant
+|----------------------------------------------------------------------------*/
+
+.jp-ModalCommandPalette {
+ position: absolute;
+ z-index: 10000;
+ top: 38px;
+ left: 30%;
+ margin: 0;
+ padding: 4px;
+ width: 40%;
+ box-shadow: var(--jp-elevation-z4);
+ border-radius: 4px;
+ background: var(--jp-layout-color0);
+}
+
+.jp-ModalCommandPalette .lm-CommandPalette {
+ max-height: 40vh;
+}
+
+.jp-ModalCommandPalette .lm-CommandPalette .lm-close-icon::after {
+ display: none;
+}
+
+.jp-ModalCommandPalette .lm-CommandPalette .lm-CommandPalette-header {
+ display: none;
+}
+
+.jp-ModalCommandPalette .lm-CommandPalette .lm-CommandPalette-item {
+ margin-left: 4px;
+ margin-right: 4px;
+}
+
+.jp-ModalCommandPalette
+ .lm-CommandPalette
+ .lm-CommandPalette-item.lm-mod-disabled {
+ display: none;
+}
+
+/*-----------------------------------------------------------------------------
+| Search
+|----------------------------------------------------------------------------*/
+
+.lm-CommandPalette-search {
+ padding: 4px;
+ background-color: var(--jp-layout-color1);
+ z-index: 2;
+}
+
+.lm-CommandPalette-wrapper {
+ overflow: overlay;
+ padding: 0 9px;
+ background-color: var(--jp-input-active-background);
+ height: 30px;
+ box-shadow: inset 0 0 0 var(--jp-border-width) var(--jp-input-border-color);
+}
+
+.lm-CommandPalette.lm-mod-focused .lm-CommandPalette-wrapper {
+ box-shadow: inset 0 0 0 1px var(--jp-input-active-box-shadow-color),
+ inset 0 0 0 3px var(--jp-input-active-box-shadow-color);
+}
+
+.jp-SearchIconGroup {
+ color: white;
+ background-color: var(--jp-brand-color1);
+ position: absolute;
+ top: 4px;
+ right: 4px;
+ padding: 5px 5px 1px;
+}
+
+.jp-SearchIconGroup svg {
+ height: 20px;
+ width: 20px;
+}
+
+.jp-SearchIconGroup .jp-icon3[fill] {
+ fill: var(--jp-layout-color0);
+}
+
+.lm-CommandPalette-input {
+ background: transparent;
+ width: calc(100% - 18px);
+ float: left;
+ border: none;
+ outline: none;
+ font-size: var(--jp-ui-font-size1);
+ color: var(--jp-ui-font-color0);
+ line-height: var(--jp-private-commandpalette-search-height);
+}
+
+.lm-CommandPalette-input::-webkit-input-placeholder,
+.lm-CommandPalette-input::-moz-placeholder,
+.lm-CommandPalette-input:-ms-input-placeholder {
+ color: var(--jp-ui-font-color2);
+ font-size: var(--jp-ui-font-size1);
+}
+
+/*-----------------------------------------------------------------------------
+| Results
+|----------------------------------------------------------------------------*/
+
+.lm-CommandPalette-header:first-child {
+ margin-top: 0;
+}
+
+.lm-CommandPalette-header {
+ border-bottom: solid var(--jp-border-width) var(--jp-border-color2);
+ color: var(--jp-ui-font-color1);
+ cursor: pointer;
+ display: flex;
+ font-size: var(--jp-ui-font-size0);
+ font-weight: 600;
+ letter-spacing: 1px;
+ margin-top: 8px;
+ padding: 8px 0 8px 12px;
+ text-transform: uppercase;
+}
+
+.lm-CommandPalette-header.lm-mod-active {
+ background: var(--jp-layout-color2);
+}
+
+.lm-CommandPalette-header > mark {
+ background-color: transparent;
+ font-weight: bold;
+ color: var(--jp-ui-font-color1);
+}
+
+.lm-CommandPalette-item {
+ padding: 4px 12px 4px 4px;
+ color: var(--jp-ui-font-color1);
+ font-size: var(--jp-ui-font-size1);
+ font-weight: 400;
+ display: flex;
+}
+
+.lm-CommandPalette-item.lm-mod-disabled {
+ color: var(--jp-ui-font-color2);
+}
+
+.lm-CommandPalette-item.lm-mod-active {
+ color: var(--jp-ui-inverse-font-color1);
+ background: var(--jp-brand-color1);
+}
+
+.lm-CommandPalette-item.lm-mod-active .lm-CommandPalette-itemLabel > mark {
+ color: var(--jp-ui-inverse-font-color0);
+}
+
+.lm-CommandPalette-item.lm-mod-active .jp-icon-selectable[fill] {
+ fill: var(--jp-layout-color0);
+}
+
+.lm-CommandPalette-item.lm-mod-active:hover:not(.lm-mod-disabled) {
+ color: var(--jp-ui-inverse-font-color1);
+ background: var(--jp-brand-color1);
+}
+
+.lm-CommandPalette-item:hover:not(.lm-mod-active):not(.lm-mod-disabled) {
+ background: var(--jp-layout-color2);
+}
+
+.lm-CommandPalette-itemContent {
+ overflow: hidden;
+}
+
+.lm-CommandPalette-itemLabel > mark {
+ color: var(--jp-ui-font-color0);
+ background-color: transparent;
+ font-weight: bold;
+}
+
+.lm-CommandPalette-item.lm-mod-disabled mark {
+ color: var(--jp-ui-font-color2);
+}
+
+.lm-CommandPalette-item .lm-CommandPalette-itemIcon {
+ margin: 0 4px 0 0;
+ position: relative;
+ width: 16px;
+ top: 2px;
+ flex: 0 0 auto;
+}
+
+.lm-CommandPalette-item.lm-mod-disabled .lm-CommandPalette-itemIcon {
+ opacity: 0.6;
+}
+
+.lm-CommandPalette-item .lm-CommandPalette-itemShortcut {
+ flex: 0 0 auto;
+}
+
+.lm-CommandPalette-itemCaption {
+ display: none;
+}
+
+.lm-CommandPalette-content {
+ background-color: var(--jp-layout-color1);
+}
+
+.lm-CommandPalette-content:empty::after {
+ content: 'No results';
+ margin: auto;
+ margin-top: 20px;
+ width: 100px;
+ display: block;
+ font-size: var(--jp-ui-font-size2);
+ font-family: var(--jp-ui-font-family);
+ font-weight: lighter;
+}
+
+.lm-CommandPalette-emptyMessage {
+ text-align: center;
+ margin-top: 24px;
+ line-height: 1.32;
+ padding: 0 8px;
+ color: var(--jp-content-font-color3);
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) 2014-2017, Jupyter Development Team.
+|
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-Dialog {
+ position: absolute;
+ z-index: 10000;
+ display: flex;
+ flex-direction: column;
+ align-items: center;
+ justify-content: center;
+ top: 0;
+ left: 0;
+ margin: 0;
+ padding: 0;
+ width: 100%;
+ height: 100%;
+ background: var(--jp-dialog-background);
+}
+
+.jp-Dialog-content {
+ display: flex;
+ flex-direction: column;
+ margin-left: auto;
+ margin-right: auto;
+ background: var(--jp-layout-color1);
+ padding: 24px 24px 12px;
+ min-width: 300px;
+ min-height: 150px;
+ max-width: 1000px;
+ max-height: 500px;
+ box-sizing: border-box;
+ box-shadow: var(--jp-elevation-z20);
+ word-wrap: break-word;
+ border-radius: var(--jp-border-radius);
+
+ /* This is needed so that all font sizing of children done in ems is
+ * relative to this base size */
+ font-size: var(--jp-ui-font-size1);
+ color: var(--jp-ui-font-color1);
+ resize: both;
+}
+
+.jp-Dialog-content.jp-Dialog-content-small {
+ max-width: 500px;
+}
+
+.jp-Dialog-button {
+ overflow: visible;
+}
+
+button.jp-Dialog-button:focus {
+ outline: 1px solid var(--jp-brand-color1);
+ outline-offset: 4px;
+ -moz-outline-radius: 0;
+}
+
+button.jp-Dialog-button:focus::-moz-focus-inner {
+ border: 0;
+}
+
+button.jp-Dialog-button.jp-mod-styled.jp-mod-accept:focus,
+button.jp-Dialog-button.jp-mod-styled.jp-mod-warn:focus,
+button.jp-Dialog-button.jp-mod-styled.jp-mod-reject:focus {
+ outline-offset: 4px;
+ -moz-outline-radius: 0;
+}
+
+button.jp-Dialog-button.jp-mod-styled.jp-mod-accept:focus {
+ outline: 1px solid var(--jp-accept-color-normal, var(--jp-brand-color1));
+}
+
+button.jp-Dialog-button.jp-mod-styled.jp-mod-warn:focus {
+ outline: 1px solid var(--jp-warn-color-normal, var(--jp-error-color1));
+}
+
+button.jp-Dialog-button.jp-mod-styled.jp-mod-reject:focus {
+ outline: 1px solid var(--jp-reject-color-normal, var(--md-grey-600));
+}
+
+button.jp-Dialog-close-button {
+ padding: 0;
+ height: 100%;
+ min-width: unset;
+ min-height: unset;
+}
+
+.jp-Dialog-header {
+ display: flex;
+ justify-content: space-between;
+ flex: 0 0 auto;
+ padding-bottom: 12px;
+ font-size: var(--jp-ui-font-size3);
+ font-weight: 400;
+ color: var(--jp-ui-font-color1);
+}
+
+.jp-Dialog-body {
+ display: flex;
+ flex-direction: column;
+ flex: 1 1 auto;
+ font-size: var(--jp-ui-font-size1);
+ background: var(--jp-layout-color1);
+ color: var(--jp-ui-font-color1);
+ overflow: auto;
+}
+
+.jp-Dialog-footer {
+ display: flex;
+ flex-direction: row;
+ justify-content: flex-end;
+ align-items: center;
+ flex: 0 0 auto;
+ margin-left: -12px;
+ margin-right: -12px;
+ padding: 12px;
+}
+
+.jp-Dialog-checkbox {
+ padding-right: 5px;
+}
+
+.jp-Dialog-checkbox > input:focus-visible {
+ outline: 1px solid var(--jp-input-active-border-color);
+ outline-offset: 1px;
+}
+
+.jp-Dialog-spacer {
+ flex: 1 1 auto;
+}
+
+.jp-Dialog-title {
+ overflow: hidden;
+ white-space: nowrap;
+ text-overflow: ellipsis;
+}
+
+.jp-Dialog-body > .jp-select-wrapper {
+ width: 100%;
+}
+
+.jp-Dialog-body > button {
+ padding: 0 16px;
+}
+
+.jp-Dialog-body > label {
+ line-height: 1.4;
+ color: var(--jp-ui-font-color0);
+}
+
+.jp-Dialog-button.jp-mod-styled:not(:last-child) {
+ margin-right: 12px;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+.jp-Input-Boolean-Dialog {
+ flex-direction: row-reverse;
+ align-items: end;
+ width: 100%;
+}
+
+.jp-Input-Boolean-Dialog > label {
+ flex: 1 1 auto;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) 2014-2016, Jupyter Development Team.
+|
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-MainAreaWidget > :focus {
+ outline: none;
+}
+
+.jp-MainAreaWidget .jp-MainAreaWidget-error {
+ padding: 6px;
+}
+
+.jp-MainAreaWidget .jp-MainAreaWidget-error > pre {
+ width: auto;
+ padding: 10px;
+ background: var(--jp-error-color3);
+ border: var(--jp-border-width) solid var(--jp-error-color1);
+ border-radius: var(--jp-border-radius);
+ color: var(--jp-ui-font-color1);
+ font-size: var(--jp-ui-font-size1);
+ white-space: pre-wrap;
+ word-wrap: break-word;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/**
+ * google-material-color v1.2.6
+ * https://github.com/danlevan/google-material-color
+ */
+:root {
+ --md-red-50: #ffebee;
+ --md-red-100: #ffcdd2;
+ --md-red-200: #ef9a9a;
+ --md-red-300: #e57373;
+ --md-red-400: #ef5350;
+ --md-red-500: #f44336;
+ --md-red-600: #e53935;
+ --md-red-700: #d32f2f;
+ --md-red-800: #c62828;
+ --md-red-900: #b71c1c;
+ --md-red-A100: #ff8a80;
+ --md-red-A200: #ff5252;
+ --md-red-A400: #ff1744;
+ --md-red-A700: #d50000;
+ --md-pink-50: #fce4ec;
+ --md-pink-100: #f8bbd0;
+ --md-pink-200: #f48fb1;
+ --md-pink-300: #f06292;
+ --md-pink-400: #ec407a;
+ --md-pink-500: #e91e63;
+ --md-pink-600: #d81b60;
+ --md-pink-700: #c2185b;
+ --md-pink-800: #ad1457;
+ --md-pink-900: #880e4f;
+ --md-pink-A100: #ff80ab;
+ --md-pink-A200: #ff4081;
+ --md-pink-A400: #f50057;
+ --md-pink-A700: #c51162;
+ --md-purple-50: #f3e5f5;
+ --md-purple-100: #e1bee7;
+ --md-purple-200: #ce93d8;
+ --md-purple-300: #ba68c8;
+ --md-purple-400: #ab47bc;
+ --md-purple-500: #9c27b0;
+ --md-purple-600: #8e24aa;
+ --md-purple-700: #7b1fa2;
+ --md-purple-800: #6a1b9a;
+ --md-purple-900: #4a148c;
+ --md-purple-A100: #ea80fc;
+ --md-purple-A200: #e040fb;
+ --md-purple-A400: #d500f9;
+ --md-purple-A700: #a0f;
+ --md-deep-purple-50: #ede7f6;
+ --md-deep-purple-100: #d1c4e9;
+ --md-deep-purple-200: #b39ddb;
+ --md-deep-purple-300: #9575cd;
+ --md-deep-purple-400: #7e57c2;
+ --md-deep-purple-500: #673ab7;
+ --md-deep-purple-600: #5e35b1;
+ --md-deep-purple-700: #512da8;
+ --md-deep-purple-800: #4527a0;
+ --md-deep-purple-900: #311b92;
+ --md-deep-purple-A100: #b388ff;
+ --md-deep-purple-A200: #7c4dff;
+ --md-deep-purple-A400: #651fff;
+ --md-deep-purple-A700: #6200ea;
+ --md-indigo-50: #e8eaf6;
+ --md-indigo-100: #c5cae9;
+ --md-indigo-200: #9fa8da;
+ --md-indigo-300: #7986cb;
+ --md-indigo-400: #5c6bc0;
+ --md-indigo-500: #3f51b5;
+ --md-indigo-600: #3949ab;
+ --md-indigo-700: #303f9f;
+ --md-indigo-800: #283593;
+ --md-indigo-900: #1a237e;
+ --md-indigo-A100: #8c9eff;
+ --md-indigo-A200: #536dfe;
+ --md-indigo-A400: #3d5afe;
+ --md-indigo-A700: #304ffe;
+ --md-blue-50: #e3f2fd;
+ --md-blue-100: #bbdefb;
+ --md-blue-200: #90caf9;
+ --md-blue-300: #64b5f6;
+ --md-blue-400: #42a5f5;
+ --md-blue-500: #2196f3;
+ --md-blue-600: #1e88e5;
+ --md-blue-700: #1976d2;
+ --md-blue-800: #1565c0;
+ --md-blue-900: #0d47a1;
+ --md-blue-A100: #82b1ff;
+ --md-blue-A200: #448aff;
+ --md-blue-A400: #2979ff;
+ --md-blue-A700: #2962ff;
+ --md-light-blue-50: #e1f5fe;
+ --md-light-blue-100: #b3e5fc;
+ --md-light-blue-200: #81d4fa;
+ --md-light-blue-300: #4fc3f7;
+ --md-light-blue-400: #29b6f6;
+ --md-light-blue-500: #03a9f4;
+ --md-light-blue-600: #039be5;
+ --md-light-blue-700: #0288d1;
+ --md-light-blue-800: #0277bd;
+ --md-light-blue-900: #01579b;
+ --md-light-blue-A100: #80d8ff;
+ --md-light-blue-A200: #40c4ff;
+ --md-light-blue-A400: #00b0ff;
+ --md-light-blue-A700: #0091ea;
+ --md-cyan-50: #e0f7fa;
+ --md-cyan-100: #b2ebf2;
+ --md-cyan-200: #80deea;
+ --md-cyan-300: #4dd0e1;
+ --md-cyan-400: #26c6da;
+ --md-cyan-500: #00bcd4;
+ --md-cyan-600: #00acc1;
+ --md-cyan-700: #0097a7;
+ --md-cyan-800: #00838f;
+ --md-cyan-900: #006064;
+ --md-cyan-A100: #84ffff;
+ --md-cyan-A200: #18ffff;
+ --md-cyan-A400: #00e5ff;
+ --md-cyan-A700: #00b8d4;
+ --md-teal-50: #e0f2f1;
+ --md-teal-100: #b2dfdb;
+ --md-teal-200: #80cbc4;
+ --md-teal-300: #4db6ac;
+ --md-teal-400: #26a69a;
+ --md-teal-500: #009688;
+ --md-teal-600: #00897b;
+ --md-teal-700: #00796b;
+ --md-teal-800: #00695c;
+ --md-teal-900: #004d40;
+ --md-teal-A100: #a7ffeb;
+ --md-teal-A200: #64ffda;
+ --md-teal-A400: #1de9b6;
+ --md-teal-A700: #00bfa5;
+ --md-green-50: #e8f5e9;
+ --md-green-100: #c8e6c9;
+ --md-green-200: #a5d6a7;
+ --md-green-300: #81c784;
+ --md-green-400: #66bb6a;
+ --md-green-500: #4caf50;
+ --md-green-600: #43a047;
+ --md-green-700: #388e3c;
+ --md-green-800: #2e7d32;
+ --md-green-900: #1b5e20;
+ --md-green-A100: #b9f6ca;
+ --md-green-A200: #69f0ae;
+ --md-green-A400: #00e676;
+ --md-green-A700: #00c853;
+ --md-light-green-50: #f1f8e9;
+ --md-light-green-100: #dcedc8;
+ --md-light-green-200: #c5e1a5;
+ --md-light-green-300: #aed581;
+ --md-light-green-400: #9ccc65;
+ --md-light-green-500: #8bc34a;
+ --md-light-green-600: #7cb342;
+ --md-light-green-700: #689f38;
+ --md-light-green-800: #558b2f;
+ --md-light-green-900: #33691e;
+ --md-light-green-A100: #ccff90;
+ --md-light-green-A200: #b2ff59;
+ --md-light-green-A400: #76ff03;
+ --md-light-green-A700: #64dd17;
+ --md-lime-50: #f9fbe7;
+ --md-lime-100: #f0f4c3;
+ --md-lime-200: #e6ee9c;
+ --md-lime-300: #dce775;
+ --md-lime-400: #d4e157;
+ --md-lime-500: #cddc39;
+ --md-lime-600: #c0ca33;
+ --md-lime-700: #afb42b;
+ --md-lime-800: #9e9d24;
+ --md-lime-900: #827717;
+ --md-lime-A100: #f4ff81;
+ --md-lime-A200: #eeff41;
+ --md-lime-A400: #c6ff00;
+ --md-lime-A700: #aeea00;
+ --md-yellow-50: #fffde7;
+ --md-yellow-100: #fff9c4;
+ --md-yellow-200: #fff59d;
+ --md-yellow-300: #fff176;
+ --md-yellow-400: #ffee58;
+ --md-yellow-500: #ffeb3b;
+ --md-yellow-600: #fdd835;
+ --md-yellow-700: #fbc02d;
+ --md-yellow-800: #f9a825;
+ --md-yellow-900: #f57f17;
+ --md-yellow-A100: #ffff8d;
+ --md-yellow-A200: #ff0;
+ --md-yellow-A400: #ffea00;
+ --md-yellow-A700: #ffd600;
+ --md-amber-50: #fff8e1;
+ --md-amber-100: #ffecb3;
+ --md-amber-200: #ffe082;
+ --md-amber-300: #ffd54f;
+ --md-amber-400: #ffca28;
+ --md-amber-500: #ffc107;
+ --md-amber-600: #ffb300;
+ --md-amber-700: #ffa000;
+ --md-amber-800: #ff8f00;
+ --md-amber-900: #ff6f00;
+ --md-amber-A100: #ffe57f;
+ --md-amber-A200: #ffd740;
+ --md-amber-A400: #ffc400;
+ --md-amber-A700: #ffab00;
+ --md-orange-50: #fff3e0;
+ --md-orange-100: #ffe0b2;
+ --md-orange-200: #ffcc80;
+ --md-orange-300: #ffb74d;
+ --md-orange-400: #ffa726;
+ --md-orange-500: #ff9800;
+ --md-orange-600: #fb8c00;
+ --md-orange-700: #f57c00;
+ --md-orange-800: #ef6c00;
+ --md-orange-900: #e65100;
+ --md-orange-A100: #ffd180;
+ --md-orange-A200: #ffab40;
+ --md-orange-A400: #ff9100;
+ --md-orange-A700: #ff6d00;
+ --md-deep-orange-50: #fbe9e7;
+ --md-deep-orange-100: #ffccbc;
+ --md-deep-orange-200: #ffab91;
+ --md-deep-orange-300: #ff8a65;
+ --md-deep-orange-400: #ff7043;
+ --md-deep-orange-500: #ff5722;
+ --md-deep-orange-600: #f4511e;
+ --md-deep-orange-700: #e64a19;
+ --md-deep-orange-800: #d84315;
+ --md-deep-orange-900: #bf360c;
+ --md-deep-orange-A100: #ff9e80;
+ --md-deep-orange-A200: #ff6e40;
+ --md-deep-orange-A400: #ff3d00;
+ --md-deep-orange-A700: #dd2c00;
+ --md-brown-50: #efebe9;
+ --md-brown-100: #d7ccc8;
+ --md-brown-200: #bcaaa4;
+ --md-brown-300: #a1887f;
+ --md-brown-400: #8d6e63;
+ --md-brown-500: #795548;
+ --md-brown-600: #6d4c41;
+ --md-brown-700: #5d4037;
+ --md-brown-800: #4e342e;
+ --md-brown-900: #3e2723;
+ --md-grey-50: #fafafa;
+ --md-grey-100: #f5f5f5;
+ --md-grey-200: #eee;
+ --md-grey-300: #e0e0e0;
+ --md-grey-400: #bdbdbd;
+ --md-grey-500: #9e9e9e;
+ --md-grey-600: #757575;
+ --md-grey-700: #616161;
+ --md-grey-800: #424242;
+ --md-grey-900: #212121;
+ --md-blue-grey-50: #eceff1;
+ --md-blue-grey-100: #cfd8dc;
+ --md-blue-grey-200: #b0bec5;
+ --md-blue-grey-300: #90a4ae;
+ --md-blue-grey-400: #78909c;
+ --md-blue-grey-500: #607d8b;
+ --md-blue-grey-600: #546e7a;
+ --md-blue-grey-700: #455a64;
+ --md-blue-grey-800: #37474f;
+ --md-blue-grey-900: #263238;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) 2014-2017, Jupyter Development Team.
+|
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| RenderedText
+|----------------------------------------------------------------------------*/
+
+:root {
+ /* This is the padding value to fill the gaps between lines containing spans with background color. */
+ --jp-private-code-span-padding: calc(
+ (var(--jp-code-line-height) - 1) * var(--jp-code-font-size) / 2
+ );
+}
+
+.jp-RenderedText {
+ text-align: left;
+ padding-left: var(--jp-code-padding);
+ line-height: var(--jp-code-line-height);
+ font-family: var(--jp-code-font-family);
+}
+
+.jp-RenderedText pre,
+.jp-RenderedJavaScript pre,
+.jp-RenderedHTMLCommon pre {
+ color: var(--jp-content-font-color1);
+ font-size: var(--jp-code-font-size);
+ border: none;
+ margin: 0;
+ padding: 0;
+}
+
+.jp-RenderedText pre a:link {
+ text-decoration: none;
+ color: var(--jp-content-link-color);
+}
+
+.jp-RenderedText pre a:hover {
+ text-decoration: underline;
+ color: var(--jp-content-link-color);
+}
+
+.jp-RenderedText pre a:visited {
+ text-decoration: none;
+ color: var(--jp-content-link-color);
+}
+
+/* console foregrounds and backgrounds */
+.jp-RenderedText pre .ansi-black-fg {
+ color: #3e424d;
+}
+
+.jp-RenderedText pre .ansi-red-fg {
+ color: #e75c58;
+}
+
+.jp-RenderedText pre .ansi-green-fg {
+ color: #00a250;
+}
+
+.jp-RenderedText pre .ansi-yellow-fg {
+ color: #ddb62b;
+}
+
+.jp-RenderedText pre .ansi-blue-fg {
+ color: #208ffb;
+}
+
+.jp-RenderedText pre .ansi-magenta-fg {
+ color: #d160c4;
+}
+
+.jp-RenderedText pre .ansi-cyan-fg {
+ color: #60c6c8;
+}
+
+.jp-RenderedText pre .ansi-white-fg {
+ color: #c5c1b4;
+}
+
+.jp-RenderedText pre .ansi-black-bg {
+ background-color: #3e424d;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-red-bg {
+ background-color: #e75c58;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-green-bg {
+ background-color: #00a250;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-yellow-bg {
+ background-color: #ddb62b;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-blue-bg {
+ background-color: #208ffb;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-magenta-bg {
+ background-color: #d160c4;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-cyan-bg {
+ background-color: #60c6c8;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-white-bg {
+ background-color: #c5c1b4;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-black-intense-fg {
+ color: #282c36;
+}
+
+.jp-RenderedText pre .ansi-red-intense-fg {
+ color: #b22b31;
+}
+
+.jp-RenderedText pre .ansi-green-intense-fg {
+ color: #007427;
+}
+
+.jp-RenderedText pre .ansi-yellow-intense-fg {
+ color: #b27d12;
+}
+
+.jp-RenderedText pre .ansi-blue-intense-fg {
+ color: #0065ca;
+}
+
+.jp-RenderedText pre .ansi-magenta-intense-fg {
+ color: #a03196;
+}
+
+.jp-RenderedText pre .ansi-cyan-intense-fg {
+ color: #258f8f;
+}
+
+.jp-RenderedText pre .ansi-white-intense-fg {
+ color: #a1a6b2;
+}
+
+.jp-RenderedText pre .ansi-black-intense-bg {
+ background-color: #282c36;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-red-intense-bg {
+ background-color: #b22b31;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-green-intense-bg {
+ background-color: #007427;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-yellow-intense-bg {
+ background-color: #b27d12;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-blue-intense-bg {
+ background-color: #0065ca;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-magenta-intense-bg {
+ background-color: #a03196;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-cyan-intense-bg {
+ background-color: #258f8f;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-white-intense-bg {
+ background-color: #a1a6b2;
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-default-inverse-fg {
+ color: var(--jp-ui-inverse-font-color0);
+}
+
+.jp-RenderedText pre .ansi-default-inverse-bg {
+ background-color: var(--jp-inverse-layout-color0);
+ padding: var(--jp-private-code-span-padding) 0;
+}
+
+.jp-RenderedText pre .ansi-bold {
+ font-weight: bold;
+}
+
+.jp-RenderedText pre .ansi-underline {
+ text-decoration: underline;
+}
+
+.jp-RenderedText[data-mime-type='application/vnd.jupyter.stderr'] {
+ background: var(--jp-rendermime-error-background);
+ padding-top: var(--jp-code-padding);
+}
+
+/*-----------------------------------------------------------------------------
+| RenderedLatex
+|----------------------------------------------------------------------------*/
+
+.jp-RenderedLatex {
+ color: var(--jp-content-font-color1);
+ font-size: var(--jp-content-font-size1);
+ line-height: var(--jp-content-line-height);
+}
+
+/* Left-justify outputs.*/
+.jp-OutputArea-output.jp-RenderedLatex {
+ padding: var(--jp-code-padding);
+ text-align: left;
+}
+
+/*-----------------------------------------------------------------------------
+| RenderedHTML
+|----------------------------------------------------------------------------*/
+
+.jp-RenderedHTMLCommon {
+ color: var(--jp-content-font-color1);
+ font-family: var(--jp-content-font-family);
+ font-size: var(--jp-content-font-size1);
+ line-height: var(--jp-content-line-height);
+
+ /* Give a bit more R padding on Markdown text to keep line lengths reasonable */
+ padding-right: 20px;
+}
+
+.jp-RenderedHTMLCommon em {
+ font-style: italic;
+}
+
+.jp-RenderedHTMLCommon strong {
+ font-weight: bold;
+}
+
+.jp-RenderedHTMLCommon u {
+ text-decoration: underline;
+}
+
+.jp-RenderedHTMLCommon a:link {
+ text-decoration: none;
+ color: var(--jp-content-link-color);
+}
+
+.jp-RenderedHTMLCommon a:hover {
+ text-decoration: underline;
+ color: var(--jp-content-link-color);
+}
+
+.jp-RenderedHTMLCommon a:visited {
+ text-decoration: none;
+ color: var(--jp-content-link-color);
+}
+
+/* Headings */
+
+.jp-RenderedHTMLCommon h1,
+.jp-RenderedHTMLCommon h2,
+.jp-RenderedHTMLCommon h3,
+.jp-RenderedHTMLCommon h4,
+.jp-RenderedHTMLCommon h5,
+.jp-RenderedHTMLCommon h6 {
+ line-height: var(--jp-content-heading-line-height);
+ font-weight: var(--jp-content-heading-font-weight);
+ font-style: normal;
+ margin: var(--jp-content-heading-margin-top) 0
+ var(--jp-content-heading-margin-bottom) 0;
+}
+
+.jp-RenderedHTMLCommon h1:first-child,
+.jp-RenderedHTMLCommon h2:first-child,
+.jp-RenderedHTMLCommon h3:first-child,
+.jp-RenderedHTMLCommon h4:first-child,
+.jp-RenderedHTMLCommon h5:first-child,
+.jp-RenderedHTMLCommon h6:first-child {
+ margin-top: calc(0.5 * var(--jp-content-heading-margin-top));
+}
+
+.jp-RenderedHTMLCommon h1:last-child,
+.jp-RenderedHTMLCommon h2:last-child,
+.jp-RenderedHTMLCommon h3:last-child,
+.jp-RenderedHTMLCommon h4:last-child,
+.jp-RenderedHTMLCommon h5:last-child,
+.jp-RenderedHTMLCommon h6:last-child {
+ margin-bottom: calc(0.5 * var(--jp-content-heading-margin-bottom));
+}
+
+.jp-RenderedHTMLCommon h1 {
+ font-size: var(--jp-content-font-size5);
+}
+
+.jp-RenderedHTMLCommon h2 {
+ font-size: var(--jp-content-font-size4);
+}
+
+.jp-RenderedHTMLCommon h3 {
+ font-size: var(--jp-content-font-size3);
+}
+
+.jp-RenderedHTMLCommon h4 {
+ font-size: var(--jp-content-font-size2);
+}
+
+.jp-RenderedHTMLCommon h5 {
+ font-size: var(--jp-content-font-size1);
+}
+
+.jp-RenderedHTMLCommon h6 {
+ font-size: var(--jp-content-font-size0);
+}
+
+/* Lists */
+
+/* stylelint-disable selector-max-type, selector-max-compound-selectors */
+
+.jp-RenderedHTMLCommon ul:not(.list-inline),
+.jp-RenderedHTMLCommon ol:not(.list-inline) {
+ padding-left: 2em;
+}
+
+.jp-RenderedHTMLCommon ul {
+ list-style: disc;
+}
+
+.jp-RenderedHTMLCommon ul ul {
+ list-style: square;
+}
+
+.jp-RenderedHTMLCommon ul ul ul {
+ list-style: circle;
+}
+
+.jp-RenderedHTMLCommon ol {
+ list-style: decimal;
+}
+
+.jp-RenderedHTMLCommon ol ol {
+ list-style: upper-alpha;
+}
+
+.jp-RenderedHTMLCommon ol ol ol {
+ list-style: lower-alpha;
+}
+
+.jp-RenderedHTMLCommon ol ol ol ol {
+ list-style: lower-roman;
+}
+
+.jp-RenderedHTMLCommon ol ol ol ol ol {
+ list-style: decimal;
+}
+
+.jp-RenderedHTMLCommon ol,
+.jp-RenderedHTMLCommon ul {
+ margin-bottom: 1em;
+}
+
+.jp-RenderedHTMLCommon ul ul,
+.jp-RenderedHTMLCommon ul ol,
+.jp-RenderedHTMLCommon ol ul,
+.jp-RenderedHTMLCommon ol ol {
+ margin-bottom: 0;
+}
+
+/* stylelint-enable selector-max-type, selector-max-compound-selectors */
+
+.jp-RenderedHTMLCommon hr {
+ color: var(--jp-border-color2);
+ background-color: var(--jp-border-color1);
+ margin-top: 1em;
+ margin-bottom: 1em;
+}
+
+.jp-RenderedHTMLCommon > pre {
+ margin: 1.5em 2em;
+}
+
+.jp-RenderedHTMLCommon pre,
+.jp-RenderedHTMLCommon code {
+ border: 0;
+ background-color: var(--jp-layout-color0);
+ color: var(--jp-content-font-color1);
+ font-family: var(--jp-code-font-family);
+ font-size: inherit;
+ line-height: var(--jp-code-line-height);
+ padding: 0;
+ white-space: pre-wrap;
+}
+
+.jp-RenderedHTMLCommon :not(pre) > code {
+ background-color: var(--jp-layout-color2);
+ padding: 1px 5px;
+}
+
+/* Tables */
+
+.jp-RenderedHTMLCommon table {
+ border-collapse: collapse;
+ border-spacing: 0;
+ border: none;
+ color: var(--jp-ui-font-color1);
+ font-size: var(--jp-ui-font-size1);
+ table-layout: fixed;
+ margin-left: auto;
+ margin-bottom: 1em;
+ margin-right: auto;
+}
+
+.jp-RenderedHTMLCommon thead {
+ border-bottom: var(--jp-border-width) solid var(--jp-border-color1);
+ vertical-align: bottom;
+}
+
+.jp-RenderedHTMLCommon td,
+.jp-RenderedHTMLCommon th,
+.jp-RenderedHTMLCommon tr {
+ vertical-align: middle;
+ padding: 0.5em;
+ line-height: normal;
+ white-space: normal;
+ max-width: none;
+ border: none;
+}
+
+.jp-RenderedMarkdown.jp-RenderedHTMLCommon td,
+.jp-RenderedMarkdown.jp-RenderedHTMLCommon th {
+ max-width: none;
+}
+
+:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon td,
+:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon th,
+:not(.jp-RenderedMarkdown).jp-RenderedHTMLCommon tr {
+ text-align: right;
+}
+
+.jp-RenderedHTMLCommon th {
+ font-weight: bold;
+}
+
+.jp-RenderedHTMLCommon tbody tr:nth-child(odd) {
+ background: var(--jp-layout-color0);
+}
+
+.jp-RenderedHTMLCommon tbody tr:nth-child(even) {
+ background: var(--jp-rendermime-table-row-background);
+}
+
+.jp-RenderedHTMLCommon tbody tr:hover {
+ background: var(--jp-rendermime-table-row-hover-background);
+}
+
+.jp-RenderedHTMLCommon p {
+ text-align: left;
+ margin: 0;
+ margin-bottom: 1em;
+}
+
+.jp-RenderedHTMLCommon img {
+ -moz-force-broken-image-icon: 1;
+}
+
+/* Restrict to direct children as other images could be nested in other content. */
+.jp-RenderedHTMLCommon > img {
+ display: block;
+ margin-left: 0;
+ margin-right: 0;
+ margin-bottom: 1em;
+}
+
+/* Change color behind transparent images if they need it... */
+[data-jp-theme-light='false'] .jp-RenderedImage img.jp-needs-light-background {
+ background-color: var(--jp-inverse-layout-color1);
+}
+
+[data-jp-theme-light='true'] .jp-RenderedImage img.jp-needs-dark-background {
+ background-color: var(--jp-inverse-layout-color1);
+}
+
+.jp-RenderedHTMLCommon img,
+.jp-RenderedImage img,
+.jp-RenderedHTMLCommon svg,
+.jp-RenderedSVG svg {
+ max-width: 100%;
+ height: auto;
+}
+
+.jp-RenderedHTMLCommon img.jp-mod-unconfined,
+.jp-RenderedImage img.jp-mod-unconfined,
+.jp-RenderedHTMLCommon svg.jp-mod-unconfined,
+.jp-RenderedSVG svg.jp-mod-unconfined {
+ max-width: none;
+}
+
+.jp-RenderedHTMLCommon .alert {
+ padding: var(--jp-notebook-padding);
+ border: var(--jp-border-width) solid transparent;
+ border-radius: var(--jp-border-radius);
+ margin-bottom: 1em;
+}
+
+.jp-RenderedHTMLCommon .alert-info {
+ color: var(--jp-info-color0);
+ background-color: var(--jp-info-color3);
+ border-color: var(--jp-info-color2);
+}
+
+.jp-RenderedHTMLCommon .alert-info hr {
+ border-color: var(--jp-info-color3);
+}
+
+.jp-RenderedHTMLCommon .alert-info > p:last-child,
+.jp-RenderedHTMLCommon .alert-info > ul:last-child {
+ margin-bottom: 0;
+}
+
+.jp-RenderedHTMLCommon .alert-warning {
+ color: var(--jp-warn-color0);
+ background-color: var(--jp-warn-color3);
+ border-color: var(--jp-warn-color2);
+}
+
+.jp-RenderedHTMLCommon .alert-warning hr {
+ border-color: var(--jp-warn-color3);
+}
+
+.jp-RenderedHTMLCommon .alert-warning > p:last-child,
+.jp-RenderedHTMLCommon .alert-warning > ul:last-child {
+ margin-bottom: 0;
+}
+
+.jp-RenderedHTMLCommon .alert-success {
+ color: var(--jp-success-color0);
+ background-color: var(--jp-success-color3);
+ border-color: var(--jp-success-color2);
+}
+
+.jp-RenderedHTMLCommon .alert-success hr {
+ border-color: var(--jp-success-color3);
+}
+
+.jp-RenderedHTMLCommon .alert-success > p:last-child,
+.jp-RenderedHTMLCommon .alert-success > ul:last-child {
+ margin-bottom: 0;
+}
+
+.jp-RenderedHTMLCommon .alert-danger {
+ color: var(--jp-error-color0);
+ background-color: var(--jp-error-color3);
+ border-color: var(--jp-error-color2);
+}
+
+.jp-RenderedHTMLCommon .alert-danger hr {
+ border-color: var(--jp-error-color3);
+}
+
+.jp-RenderedHTMLCommon .alert-danger > p:last-child,
+.jp-RenderedHTMLCommon .alert-danger > ul:last-child {
+ margin-bottom: 0;
+}
+
+.jp-RenderedHTMLCommon blockquote {
+ margin: 1em 2em;
+ padding: 0 1em;
+ border-left: 5px solid var(--jp-border-color2);
+}
+
+a.jp-InternalAnchorLink {
+ visibility: hidden;
+ margin-left: 8px;
+ color: var(--md-blue-800);
+}
+
+h1:hover .jp-InternalAnchorLink,
+h2:hover .jp-InternalAnchorLink,
+h3:hover .jp-InternalAnchorLink,
+h4:hover .jp-InternalAnchorLink,
+h5:hover .jp-InternalAnchorLink,
+h6:hover .jp-InternalAnchorLink {
+ visibility: visible;
+}
+
+.jp-RenderedHTMLCommon kbd {
+ background-color: var(--jp-rendermime-table-row-background);
+ border: 1px solid var(--jp-border-color0);
+ border-bottom-color: var(--jp-border-color2);
+ border-radius: 3px;
+ box-shadow: inset 0 -1px 0 rgba(0, 0, 0, 0.25);
+ display: inline-block;
+ font-size: var(--jp-ui-font-size0);
+ line-height: 1em;
+ padding: 0.2em 0.5em;
+}
+
+/* Most direct children of .jp-RenderedHTMLCommon have a margin-bottom of 1.0.
+ * At the bottom of cells this is a bit too much as there is also spacing
+ * between cells. Going all the way to 0 gets too tight between markdown and
+ * code cells.
+ */
+.jp-RenderedHTMLCommon > *:last-child {
+ margin-bottom: 0.5em;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Copyright (c) 2014-2017, PhosphorJS Contributors
+|
+| Distributed under the terms of the BSD 3-Clause License.
+|
+| The full license is in the file LICENSE, distributed with this software.
+|----------------------------------------------------------------------------*/
+
+.lm-cursor-backdrop {
+ position: fixed;
+ width: 200px;
+ height: 200px;
+ margin-top: -100px;
+ margin-left: -100px;
+ will-change: transform;
+ z-index: 100;
+}
+
+.lm-mod-drag-image {
+ will-change: transform;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+.jp-lineFormSearch {
+ padding: 4px 12px;
+ background-color: var(--jp-layout-color2);
+ box-shadow: var(--jp-toolbar-box-shadow);
+ z-index: 2;
+ font-size: var(--jp-ui-font-size1);
+}
+
+.jp-lineFormCaption {
+ font-size: var(--jp-ui-font-size0);
+ line-height: var(--jp-ui-font-size1);
+ margin-top: 4px;
+ color: var(--jp-ui-font-color0);
+}
+
+.jp-baseLineForm {
+ border: none;
+ border-radius: 0;
+ position: absolute;
+ background-size: 16px;
+ background-repeat: no-repeat;
+ background-position: center;
+ outline: none;
+}
+
+.jp-lineFormButtonContainer {
+ top: 4px;
+ right: 8px;
+ height: 24px;
+ padding: 0 12px;
+ width: 12px;
+}
+
+.jp-lineFormButtonIcon {
+ top: 0;
+ right: 0;
+ background-color: var(--jp-brand-color1);
+ height: 100%;
+ width: 100%;
+ box-sizing: border-box;
+ padding: 4px 6px;
+}
+
+.jp-lineFormButton {
+ top: 0;
+ right: 0;
+ background-color: transparent;
+ height: 100%;
+ width: 100%;
+ box-sizing: border-box;
+}
+
+.jp-lineFormWrapper {
+ overflow: hidden;
+ padding: 0 8px;
+ border: 1px solid var(--jp-border-color0);
+ background-color: var(--jp-input-active-background);
+ height: 22px;
+}
+
+.jp-lineFormWrapperFocusWithin {
+ border: var(--jp-border-width) solid var(--md-blue-500);
+ box-shadow: inset 0 0 4px var(--md-blue-300);
+}
+
+.jp-lineFormInput {
+ background: transparent;
+ width: 200px;
+ height: 100%;
+ border: none;
+ outline: none;
+ color: var(--jp-ui-font-color0);
+ line-height: 28px;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) 2014-2016, Jupyter Development Team.
+|
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-JSONEditor {
+ display: flex;
+ flex-direction: column;
+ width: 100%;
+}
+
+.jp-JSONEditor-host {
+ flex: 1 1 auto;
+ border: var(--jp-border-width) solid var(--jp-input-border-color);
+ border-radius: 0;
+ background: var(--jp-layout-color0);
+ min-height: 50px;
+ padding: 1px;
+}
+
+.jp-JSONEditor.jp-mod-error .jp-JSONEditor-host {
+ border-color: red;
+ outline-color: red;
+}
+
+.jp-JSONEditor-header {
+ display: flex;
+ flex: 1 0 auto;
+ padding: 0 0 0 12px;
+}
+
+.jp-JSONEditor-header label {
+ flex: 0 0 auto;
+}
+
+.jp-JSONEditor-commitButton {
+ height: 16px;
+ width: 16px;
+ background-size: 18px;
+ background-repeat: no-repeat;
+ background-position: center;
+}
+
+.jp-JSONEditor-host.jp-mod-focused {
+ background-color: var(--jp-input-active-background);
+ border: 1px solid var(--jp-input-active-border-color);
+ box-shadow: var(--jp-input-box-shadow);
+}
+
+.jp-Editor.jp-mod-dropTarget {
+ border: var(--jp-border-width) solid var(--jp-input-active-border-color);
+ box-shadow: var(--jp-input-box-shadow);
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+.jp-DocumentSearch-input {
+ border: none;
+ outline: none;
+ color: var(--jp-ui-font-color0);
+ font-size: var(--jp-ui-font-size1);
+ background-color: var(--jp-layout-color0);
+ font-family: var(--jp-ui-font-family);
+ padding: 2px 1px;
+ resize: none;
+}
+
+.jp-DocumentSearch-overlay {
+ position: absolute;
+ background-color: var(--jp-toolbar-background);
+ border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
+ border-left: var(--jp-border-width) solid var(--jp-toolbar-border-color);
+ top: 0;
+ right: 0;
+ z-index: 7;
+ min-width: 405px;
+ padding: 2px;
+ font-size: var(--jp-ui-font-size1);
+
+ --jp-private-document-search-button-height: 20px;
+}
+
+.jp-DocumentSearch-overlay button {
+ background-color: var(--jp-toolbar-background);
+ outline: 0;
+}
+
+.jp-DocumentSearch-overlay button:hover {
+ background-color: var(--jp-layout-color2);
+}
+
+.jp-DocumentSearch-overlay button:active {
+ background-color: var(--jp-layout-color3);
+}
+
+.jp-DocumentSearch-overlay-row {
+ display: flex;
+ align-items: center;
+ margin-bottom: 2px;
+}
+
+.jp-DocumentSearch-button-content {
+ display: inline-block;
+ cursor: pointer;
+ box-sizing: border-box;
+ width: 100%;
+ height: 100%;
+}
+
+.jp-DocumentSearch-button-content svg {
+ width: 100%;
+ height: 100%;
+}
+
+.jp-DocumentSearch-input-wrapper {
+ border: var(--jp-border-width) solid var(--jp-border-color0);
+ display: flex;
+ background-color: var(--jp-layout-color0);
+ margin: 2px;
+}
+
+.jp-DocumentSearch-input-wrapper:focus-within {
+ border-color: var(--jp-cell-editor-active-border-color);
+}
+
+.jp-DocumentSearch-toggle-wrapper,
+.jp-DocumentSearch-button-wrapper {
+ all: initial;
+ overflow: hidden;
+ display: inline-block;
+ border: none;
+ box-sizing: border-box;
+}
+
+.jp-DocumentSearch-toggle-wrapper {
+ width: 14px;
+ height: 14px;
+}
+
+.jp-DocumentSearch-button-wrapper {
+ width: var(--jp-private-document-search-button-height);
+ height: var(--jp-private-document-search-button-height);
+}
+
+.jp-DocumentSearch-toggle-wrapper:focus,
+.jp-DocumentSearch-button-wrapper:focus {
+ outline: var(--jp-border-width) solid
+ var(--jp-cell-editor-active-border-color);
+ outline-offset: -1px;
+}
+
+.jp-DocumentSearch-toggle-wrapper,
+.jp-DocumentSearch-button-wrapper,
+.jp-DocumentSearch-button-content:focus {
+ outline: none;
+}
+
+.jp-DocumentSearch-toggle-placeholder {
+ width: 5px;
+}
+
+.jp-DocumentSearch-input-button::before {
+ display: block;
+ padding-top: 100%;
+}
+
+.jp-DocumentSearch-input-button-off {
+ opacity: var(--jp-search-toggle-off-opacity);
+}
+
+.jp-DocumentSearch-input-button-off:hover {
+ opacity: var(--jp-search-toggle-hover-opacity);
+}
+
+.jp-DocumentSearch-input-button-on {
+ opacity: var(--jp-search-toggle-on-opacity);
+}
+
+.jp-DocumentSearch-index-counter {
+ padding-left: 10px;
+ padding-right: 10px;
+ user-select: none;
+ min-width: 35px;
+ display: inline-block;
+}
+
+.jp-DocumentSearch-up-down-wrapper {
+ display: inline-block;
+ padding-right: 2px;
+ margin-left: auto;
+ white-space: nowrap;
+}
+
+.jp-DocumentSearch-spacer {
+ margin-left: auto;
+}
+
+.jp-DocumentSearch-up-down-wrapper button {
+ outline: 0;
+ border: none;
+ width: var(--jp-private-document-search-button-height);
+ height: var(--jp-private-document-search-button-height);
+ vertical-align: middle;
+ margin: 1px 5px 2px;
+}
+
+.jp-DocumentSearch-up-down-button:hover {
+ background-color: var(--jp-layout-color2);
+}
+
+.jp-DocumentSearch-up-down-button:active {
+ background-color: var(--jp-layout-color3);
+}
+
+.jp-DocumentSearch-filter-button {
+ border-radius: var(--jp-border-radius);
+}
+
+.jp-DocumentSearch-filter-button:hover {
+ background-color: var(--jp-layout-color2);
+}
+
+.jp-DocumentSearch-filter-button-enabled {
+ background-color: var(--jp-layout-color2);
+}
+
+.jp-DocumentSearch-filter-button-enabled:hover {
+ background-color: var(--jp-layout-color3);
+}
+
+.jp-DocumentSearch-search-options {
+ padding: 0 8px;
+ margin-left: 3px;
+ width: 100%;
+ display: grid;
+ justify-content: start;
+ grid-template-columns: 1fr 1fr;
+ align-items: center;
+ justify-items: stretch;
+}
+
+.jp-DocumentSearch-search-filter-disabled {
+ color: var(--jp-ui-font-color2);
+}
+
+.jp-DocumentSearch-search-filter {
+ display: flex;
+ align-items: center;
+ user-select: none;
+}
+
+.jp-DocumentSearch-regex-error {
+ color: var(--jp-error-color0);
+}
+
+.jp-DocumentSearch-replace-button-wrapper {
+ overflow: hidden;
+ display: inline-block;
+ box-sizing: border-box;
+ border: var(--jp-border-width) solid var(--jp-border-color0);
+ margin: auto 2px;
+ padding: 1px 4px;
+ height: calc(var(--jp-private-document-search-button-height) + 2px);
+}
+
+.jp-DocumentSearch-replace-button-wrapper:focus {
+ border: var(--jp-border-width) solid var(--jp-cell-editor-active-border-color);
+}
+
+.jp-DocumentSearch-replace-button {
+ display: inline-block;
+ text-align: center;
+ cursor: pointer;
+ box-sizing: border-box;
+ color: var(--jp-ui-font-color1);
+
+ /* height - 2 * (padding of wrapper) */
+ line-height: calc(var(--jp-private-document-search-button-height) - 2px);
+ width: 100%;
+ height: 100%;
+}
+
+.jp-DocumentSearch-replace-button:focus {
+ outline: none;
+}
+
+.jp-DocumentSearch-replace-wrapper-class {
+ margin-left: 14px;
+ display: flex;
+}
+
+.jp-DocumentSearch-replace-toggle {
+ border: none;
+ background-color: var(--jp-toolbar-background);
+ border-radius: var(--jp-border-radius);
+}
+
+.jp-DocumentSearch-replace-toggle:hover {
+ background-color: var(--jp-layout-color2);
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.cm-editor {
+ line-height: var(--jp-code-line-height);
+ font-size: var(--jp-code-font-size);
+ font-family: var(--jp-code-font-family);
+ border: 0;
+ border-radius: 0;
+ height: auto;
+
+ /* Changed to auto to autogrow */
+}
+
+.cm-editor pre {
+ padding: 0 var(--jp-code-padding);
+}
+
+.jp-CodeMirrorEditor[data-type='inline'] .cm-dialog {
+ background-color: var(--jp-layout-color0);
+ color: var(--jp-content-font-color1);
+}
+
+.jp-CodeMirrorEditor {
+ cursor: text;
+}
+
+/* When zoomed out 67% and 33% on a screen of 1440 width x 900 height */
+@media screen and (min-width: 2138px) and (max-width: 4319px) {
+ .jp-CodeMirrorEditor[data-type='inline'] .cm-cursor {
+ border-left: var(--jp-code-cursor-width1) solid
+ var(--jp-editor-cursor-color);
+ }
+}
+
+/* When zoomed out less than 33% */
+@media screen and (min-width: 4320px) {
+ .jp-CodeMirrorEditor[data-type='inline'] .cm-cursor {
+ border-left: var(--jp-code-cursor-width2) solid
+ var(--jp-editor-cursor-color);
+ }
+}
+
+.cm-editor.jp-mod-readOnly .cm-cursor {
+ display: none;
+}
+
+.jp-CollaboratorCursor {
+ border-left: 5px solid transparent;
+ border-right: 5px solid transparent;
+ border-top: none;
+ border-bottom: 3px solid;
+ background-clip: content-box;
+ margin-left: -5px;
+ margin-right: -5px;
+}
+
+.cm-searching,
+.cm-searching span {
+ /* `.cm-searching span`: we need to override syntax highlighting */
+ background-color: var(--jp-search-unselected-match-background-color);
+ color: var(--jp-search-unselected-match-color);
+}
+
+.cm-searching::selection,
+.cm-searching span::selection {
+ background-color: var(--jp-search-unselected-match-background-color);
+ color: var(--jp-search-unselected-match-color);
+}
+
+.jp-current-match > .cm-searching,
+.jp-current-match > .cm-searching span,
+.cm-searching > .jp-current-match,
+.cm-searching > .jp-current-match span {
+ background-color: var(--jp-search-selected-match-background-color);
+ color: var(--jp-search-selected-match-color);
+}
+
+.jp-current-match > .cm-searching::selection,
+.cm-searching > .jp-current-match::selection,
+.jp-current-match > .cm-searching span::selection {
+ background-color: var(--jp-search-selected-match-background-color);
+ color: var(--jp-search-selected-match-color);
+}
+
+.cm-trailingspace {
+ background-image: url();
+ background-position: center left;
+ background-repeat: repeat-x;
+}
+
+.jp-CollaboratorCursor-hover {
+ position: absolute;
+ z-index: 1;
+ transform: translateX(-50%);
+ color: white;
+ border-radius: 3px;
+ padding-left: 4px;
+ padding-right: 4px;
+ padding-top: 1px;
+ padding-bottom: 1px;
+ text-align: center;
+ font-size: var(--jp-ui-font-size1);
+ white-space: nowrap;
+}
+
+.jp-CodeMirror-ruler {
+ border-left: 1px dashed var(--jp-border-color2);
+}
+
+/* Styles for shared cursors (remote cursor locations and selected ranges) */
+.jp-CodeMirrorEditor .cm-ySelectionCaret {
+ position: relative;
+ border-left: 1px solid black;
+ margin-left: -1px;
+ margin-right: -1px;
+ box-sizing: border-box;
+}
+
+.jp-CodeMirrorEditor .cm-ySelectionCaret > .cm-ySelectionInfo {
+ white-space: nowrap;
+ position: absolute;
+ top: -1.15em;
+ padding-bottom: 0.05em;
+ left: -1px;
+ font-size: 0.95em;
+ font-family: var(--jp-ui-font-family);
+ font-weight: bold;
+ line-height: normal;
+ user-select: none;
+ color: white;
+ padding-left: 2px;
+ padding-right: 2px;
+ z-index: 101;
+ transition: opacity 0.3s ease-in-out;
+}
+
+.jp-CodeMirrorEditor .cm-ySelectionInfo {
+ transition-delay: 0.7s;
+ opacity: 0;
+}
+
+.jp-CodeMirrorEditor .cm-ySelectionCaret:hover > .cm-ySelectionInfo {
+ opacity: 1;
+ transition-delay: 0s;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-MimeDocument {
+ outline: none;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Variables
+|----------------------------------------------------------------------------*/
+
+:root {
+ --jp-private-filebrowser-button-height: 28px;
+ --jp-private-filebrowser-button-width: 48px;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-FileBrowser .jp-SidePanel-content {
+ display: flex;
+ flex-direction: column;
+}
+
+.jp-FileBrowser-toolbar.jp-Toolbar {
+ flex-wrap: wrap;
+ row-gap: 12px;
+ border-bottom: none;
+ height: auto;
+ margin: 8px 12px 0;
+ box-shadow: none;
+ padding: 0;
+ justify-content: flex-start;
+}
+
+.jp-FileBrowser-Panel {
+ flex: 1 1 auto;
+ display: flex;
+ flex-direction: column;
+}
+
+.jp-BreadCrumbs {
+ flex: 0 0 auto;
+ margin: 8px 12px;
+}
+
+.jp-BreadCrumbs-item {
+ margin: 0 2px;
+ padding: 0 2px;
+ border-radius: var(--jp-border-radius);
+ cursor: pointer;
+}
+
+.jp-BreadCrumbs-item:hover {
+ background-color: var(--jp-layout-color2);
+}
+
+.jp-BreadCrumbs-item:first-child {
+ margin-left: 0;
+}
+
+.jp-BreadCrumbs-item.jp-mod-dropTarget {
+ background-color: var(--jp-brand-color2);
+ opacity: 0.7;
+}
+
+/*-----------------------------------------------------------------------------
+| Buttons
+|----------------------------------------------------------------------------*/
+
+.jp-FileBrowser-toolbar > .jp-Toolbar-item {
+ flex: 0 0 auto;
+ padding-left: 0;
+ padding-right: 2px;
+ align-items: center;
+ height: unset;
+}
+
+.jp-FileBrowser-toolbar > .jp-Toolbar-item .jp-ToolbarButtonComponent {
+ width: 40px;
+}
+
+/*-----------------------------------------------------------------------------
+| Other styles
+|----------------------------------------------------------------------------*/
+
+.jp-FileDialog.jp-mod-conflict input {
+ color: var(--jp-error-color1);
+}
+
+.jp-FileDialog .jp-new-name-title {
+ margin-top: 12px;
+}
+
+.jp-LastModified-hidden {
+ display: none;
+}
+
+.jp-FileSize-hidden {
+ display: none;
+}
+
+.jp-FileBrowser .lm-AccordionPanel > h3:first-child {
+ display: none;
+}
+
+/*-----------------------------------------------------------------------------
+| DirListing
+|----------------------------------------------------------------------------*/
+
+.jp-DirListing {
+ flex: 1 1 auto;
+ display: flex;
+ flex-direction: column;
+ outline: 0;
+}
+
+.jp-DirListing-header {
+ flex: 0 0 auto;
+ display: flex;
+ flex-direction: row;
+ align-items: center;
+ overflow: hidden;
+ border-top: var(--jp-border-width) solid var(--jp-border-color2);
+ border-bottom: var(--jp-border-width) solid var(--jp-border-color1);
+ box-shadow: var(--jp-toolbar-box-shadow);
+ z-index: 2;
+}
+
+.jp-DirListing-headerItem {
+ padding: 4px 12px 2px;
+ font-weight: 500;
+}
+
+.jp-DirListing-headerItem:hover {
+ background: var(--jp-layout-color2);
+}
+
+.jp-DirListing-headerItem.jp-id-name {
+ flex: 1 0 84px;
+}
+
+.jp-DirListing-headerItem.jp-id-modified {
+ flex: 0 0 112px;
+ border-left: var(--jp-border-width) solid var(--jp-border-color2);
+ text-align: right;
+}
+
+.jp-DirListing-headerItem.jp-id-filesize {
+ flex: 0 0 75px;
+ border-left: var(--jp-border-width) solid var(--jp-border-color2);
+ text-align: right;
+}
+
+.jp-id-narrow {
+ display: none;
+ flex: 0 0 5px;
+ padding: 4px;
+ border-left: var(--jp-border-width) solid var(--jp-border-color2);
+ text-align: right;
+ color: var(--jp-border-color2);
+}
+
+.jp-DirListing-narrow .jp-id-narrow {
+ display: block;
+}
+
+.jp-DirListing-narrow .jp-id-modified,
+.jp-DirListing-narrow .jp-DirListing-itemModified {
+ display: none;
+}
+
+.jp-DirListing-headerItem.jp-mod-selected {
+ font-weight: 600;
+}
+
+/* increase specificity to override bundled default */
+.jp-DirListing-content {
+ flex: 1 1 auto;
+ margin: 0;
+ padding: 0;
+ list-style-type: none;
+ overflow: auto;
+ background-color: var(--jp-layout-color1);
+}
+
+.jp-DirListing-content mark {
+ color: var(--jp-ui-font-color0);
+ background-color: transparent;
+ font-weight: bold;
+}
+
+.jp-DirListing-content .jp-DirListing-item.jp-mod-selected mark {
+ color: var(--jp-ui-inverse-font-color0);
+}
+
+/* Style the directory listing content when a user drops a file to upload */
+.jp-DirListing.jp-mod-native-drop .jp-DirListing-content {
+ outline: 5px dashed rgba(128, 128, 128, 0.5);
+ outline-offset: -10px;
+ cursor: copy;
+}
+
+.jp-DirListing-item {
+ display: flex;
+ flex-direction: row;
+ align-items: center;
+ padding: 4px 12px;
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+.jp-DirListing-checkboxWrapper {
+ /* Increases hit area of checkbox. */
+ padding: 4px;
+}
+
+.jp-DirListing-header
+ .jp-DirListing-checkboxWrapper
+ + .jp-DirListing-headerItem {
+ padding-left: 4px;
+}
+
+.jp-DirListing-content .jp-DirListing-checkboxWrapper {
+ position: relative;
+ left: -4px;
+ margin: -4px 0 -4px -8px;
+}
+
+.jp-DirListing-checkboxWrapper.jp-mod-visible {
+ visibility: visible;
+}
+
+/* For devices that support hovering, hide checkboxes until hovered, selected...
+*/
+@media (hover: hover) {
+ .jp-DirListing-checkboxWrapper {
+ visibility: hidden;
+ }
+
+ .jp-DirListing-item:hover .jp-DirListing-checkboxWrapper,
+ .jp-DirListing-item.jp-mod-selected .jp-DirListing-checkboxWrapper {
+ visibility: visible;
+ }
+}
+
+.jp-DirListing-item[data-is-dot] {
+ opacity: 75%;
+}
+
+.jp-DirListing-item.jp-mod-selected {
+ color: var(--jp-ui-inverse-font-color1);
+ background: var(--jp-brand-color1);
+}
+
+.jp-DirListing-item.jp-mod-dropTarget {
+ background: var(--jp-brand-color3);
+}
+
+.jp-DirListing-item:hover:not(.jp-mod-selected) {
+ background: var(--jp-layout-color2);
+}
+
+.jp-DirListing-itemIcon {
+ flex: 0 0 20px;
+ margin-right: 4px;
+}
+
+.jp-DirListing-itemText {
+ flex: 1 0 64px;
+ white-space: nowrap;
+ overflow: hidden;
+ text-overflow: ellipsis;
+ user-select: none;
+}
+
+.jp-DirListing-itemText:focus {
+ outline-width: 2px;
+ outline-color: var(--jp-inverse-layout-color1);
+ outline-style: solid;
+ outline-offset: 1px;
+}
+
+.jp-DirListing-item.jp-mod-selected .jp-DirListing-itemText:focus {
+ outline-color: var(--jp-layout-color1);
+}
+
+.jp-DirListing-itemModified {
+ flex: 0 0 125px;
+ text-align: right;
+}
+
+.jp-DirListing-itemFileSize {
+ flex: 0 0 90px;
+ text-align: right;
+}
+
+.jp-DirListing-editor {
+ flex: 1 0 64px;
+ outline: none;
+ border: none;
+ color: var(--jp-ui-font-color1);
+ background-color: var(--jp-layout-color1);
+}
+
+.jp-DirListing-item.jp-mod-running .jp-DirListing-itemIcon::before {
+ color: var(--jp-success-color1);
+ content: '\25CF';
+ font-size: 8px;
+ position: absolute;
+ left: -8px;
+}
+
+.jp-DirListing-item.jp-mod-running.jp-mod-selected
+ .jp-DirListing-itemIcon::before {
+ color: var(--jp-ui-inverse-font-color1);
+}
+
+.jp-DirListing-item.lm-mod-drag-image,
+.jp-DirListing-item.jp-mod-selected.lm-mod-drag-image {
+ font-size: var(--jp-ui-font-size1);
+ padding-left: 4px;
+ margin-left: 4px;
+ width: 160px;
+ background-color: var(--jp-ui-inverse-font-color2);
+ box-shadow: var(--jp-elevation-z2);
+ border-radius: 0;
+ color: var(--jp-ui-font-color1);
+ transform: translateX(-40%) translateY(-58%);
+}
+
+.jp-Document {
+ min-width: 120px;
+ min-height: 120px;
+ outline: none;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Main OutputArea
+| OutputArea has a list of Outputs
+|----------------------------------------------------------------------------*/
+
+.jp-OutputArea {
+ overflow-y: auto;
+}
+
+.jp-OutputArea-child {
+ display: table;
+ table-layout: fixed;
+ width: 100%;
+ overflow: hidden;
+}
+
+.jp-OutputPrompt {
+ width: var(--jp-cell-prompt-width);
+ color: var(--jp-cell-outprompt-font-color);
+ font-family: var(--jp-cell-prompt-font-family);
+ padding: var(--jp-code-padding);
+ letter-spacing: var(--jp-cell-prompt-letter-spacing);
+ line-height: var(--jp-code-line-height);
+ font-size: var(--jp-code-font-size);
+ border: var(--jp-border-width) solid transparent;
+ opacity: var(--jp-cell-prompt-opacity);
+
+ /* Right align prompt text, don't wrap to handle large prompt numbers */
+ text-align: right;
+ white-space: nowrap;
+ overflow: hidden;
+ text-overflow: ellipsis;
+
+ /* Disable text selection */
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+.jp-OutputArea-prompt {
+ display: table-cell;
+ vertical-align: top;
+}
+
+.jp-OutputArea-output {
+ display: table-cell;
+ width: 100%;
+ height: auto;
+ overflow: auto;
+ user-select: text;
+ -moz-user-select: text;
+ -webkit-user-select: text;
+ -ms-user-select: text;
+}
+
+.jp-OutputArea .jp-RenderedText {
+ padding-left: 1ch;
+}
+
+/**
+ * Prompt overlay.
+ */
+
+.jp-OutputArea-promptOverlay {
+ position: absolute;
+ top: 0;
+ width: var(--jp-cell-prompt-width);
+ height: 100%;
+ opacity: 0.5;
+}
+
+.jp-OutputArea-promptOverlay:hover {
+ background: var(--jp-layout-color2);
+ box-shadow: inset 0 0 1px var(--jp-inverse-layout-color0);
+ cursor: zoom-out;
+}
+
+.jp-mod-outputsScrolled .jp-OutputArea-promptOverlay:hover {
+ cursor: zoom-in;
+}
+
+/**
+ * Isolated output.
+ */
+.jp-OutputArea-output.jp-mod-isolated {
+ width: 100%;
+ display: block;
+}
+
+/*
+When drag events occur, `lm-mod-override-cursor` is added to the body.
+Because iframes steal all cursor events, the following two rules are necessary
+to suppress pointer events while resize drags are occurring. There may be a
+better solution to this problem.
+*/
+body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated {
+ position: relative;
+}
+
+body.lm-mod-override-cursor .jp-OutputArea-output.jp-mod-isolated::before {
+ content: '';
+ position: absolute;
+ top: 0;
+ left: 0;
+ right: 0;
+ bottom: 0;
+ background: transparent;
+}
+
+/* pre */
+
+.jp-OutputArea-output pre {
+ border: none;
+ margin: 0;
+ padding: 0;
+ overflow-x: auto;
+ overflow-y: auto;
+ word-break: break-all;
+ word-wrap: break-word;
+ white-space: pre-wrap;
+}
+
+/* tables */
+
+.jp-OutputArea-output.jp-RenderedHTMLCommon table {
+ margin-left: 0;
+ margin-right: 0;
+}
+
+/* description lists */
+
+.jp-OutputArea-output dl,
+.jp-OutputArea-output dt,
+.jp-OutputArea-output dd {
+ display: block;
+}
+
+.jp-OutputArea-output dl {
+ width: 100%;
+ overflow: hidden;
+ padding: 0;
+ margin: 0;
+}
+
+.jp-OutputArea-output dt {
+ font-weight: bold;
+ float: left;
+ width: 20%;
+ padding: 0;
+ margin: 0;
+}
+
+.jp-OutputArea-output dd {
+ float: left;
+ width: 80%;
+ padding: 0;
+ margin: 0;
+}
+
+.jp-TrimmedOutputs pre {
+ background: var(--jp-layout-color3);
+ font-size: calc(var(--jp-code-font-size) * 1.4);
+ text-align: center;
+ text-transform: uppercase;
+}
+
+/* Hide the gutter in case of
+ * - nested output areas (e.g. in the case of output widgets)
+ * - mirrored output areas
+ */
+.jp-OutputArea .jp-OutputArea .jp-OutputArea-prompt {
+ display: none;
+}
+
+/* Hide empty lines in the output area, for instance due to cleared widgets */
+.jp-OutputArea-prompt:empty {
+ padding: 0;
+ border: 0;
+}
+
+/*-----------------------------------------------------------------------------
+| executeResult is added to any Output-result for the display of the object
+| returned by a cell
+|----------------------------------------------------------------------------*/
+
+.jp-OutputArea-output.jp-OutputArea-executeResult {
+ margin-left: 0;
+ width: 100%;
+}
+
+/* Text output with the Out[] prompt needs a top padding to match the
+ * alignment of the Out[] prompt itself.
+ */
+.jp-OutputArea-executeResult .jp-RenderedText.jp-OutputArea-output {
+ padding-top: var(--jp-code-padding);
+ border-top: var(--jp-border-width) solid transparent;
+}
+
+/*-----------------------------------------------------------------------------
+| The Stdin output
+|----------------------------------------------------------------------------*/
+
+.jp-Stdin-prompt {
+ color: var(--jp-content-font-color0);
+ padding-right: var(--jp-code-padding);
+ vertical-align: baseline;
+ flex: 0 0 auto;
+}
+
+.jp-Stdin-input {
+ font-family: var(--jp-code-font-family);
+ font-size: inherit;
+ color: inherit;
+ background-color: inherit;
+ width: 42%;
+ min-width: 200px;
+
+ /* make sure input baseline aligns with prompt */
+ vertical-align: baseline;
+
+ /* padding + margin = 0.5em between prompt and cursor */
+ padding: 0 0.25em;
+ margin: 0 0.25em;
+ flex: 0 0 70%;
+}
+
+.jp-Stdin-input::placeholder {
+ opacity: 0;
+}
+
+.jp-Stdin-input:focus {
+ box-shadow: none;
+}
+
+.jp-Stdin-input:focus::placeholder {
+ opacity: 1;
+}
+
+/*-----------------------------------------------------------------------------
+| Output Area View
+|----------------------------------------------------------------------------*/
+
+.jp-LinkedOutputView .jp-OutputArea {
+ height: 100%;
+ display: block;
+}
+
+.jp-LinkedOutputView .jp-OutputArea-output:only-child {
+ height: 100%;
+}
+
+/*-----------------------------------------------------------------------------
+| Printing
+|----------------------------------------------------------------------------*/
+
+@media print {
+ .jp-OutputArea-child {
+ break-inside: avoid-page;
+ }
+}
+
+/*-----------------------------------------------------------------------------
+| Mobile
+|----------------------------------------------------------------------------*/
+@media only screen and (max-width: 760px) {
+ .jp-OutputPrompt {
+ display: table-row;
+ text-align: left;
+ }
+
+ .jp-OutputArea-child .jp-OutputArea-output {
+ display: table-row;
+ margin-left: var(--jp-notebook-padding);
+ }
+}
+
+/* Trimmed outputs warning */
+.jp-TrimmedOutputs > a {
+ margin: 10px;
+ text-decoration: none;
+ cursor: pointer;
+}
+
+.jp-TrimmedOutputs > a:hover {
+ text-decoration: none;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Table of Contents
+|----------------------------------------------------------------------------*/
+
+:root {
+ --jp-private-toc-active-width: 4px;
+}
+
+.jp-TableOfContents {
+ display: flex;
+ flex-direction: column;
+ background: var(--jp-layout-color1);
+ color: var(--jp-ui-font-color1);
+ font-size: var(--jp-ui-font-size1);
+ height: 100%;
+}
+
+.jp-TableOfContents-placeholder {
+ text-align: center;
+}
+
+.jp-TableOfContents-placeholderContent {
+ color: var(--jp-content-font-color2);
+ padding: 8px;
+}
+
+.jp-TableOfContents-placeholderContent > h3 {
+ margin-bottom: var(--jp-content-heading-margin-bottom);
+}
+
+.jp-TableOfContents .jp-SidePanel-content {
+ overflow-y: auto;
+}
+
+.jp-TableOfContents-tree {
+ margin: 4px;
+}
+
+.jp-TableOfContents ol {
+ list-style-type: none;
+}
+
+/* stylelint-disable-next-line selector-max-type */
+.jp-TableOfContents li > ol {
+ /* Align left border with triangle icon center */
+ padding-left: 11px;
+}
+
+.jp-TableOfContents-content {
+ /* left margin for the active heading indicator */
+ margin: 0 0 0 var(--jp-private-toc-active-width);
+ padding: 0;
+ background-color: var(--jp-layout-color1);
+}
+
+.jp-tocItem {
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+.jp-tocItem-heading {
+ display: flex;
+ cursor: pointer;
+}
+
+.jp-tocItem-heading:hover {
+ background-color: var(--jp-layout-color2);
+}
+
+.jp-tocItem-content {
+ display: block;
+ padding: 4px 0;
+ white-space: nowrap;
+ text-overflow: ellipsis;
+ overflow-x: hidden;
+}
+
+.jp-tocItem-collapser {
+ height: 20px;
+ margin: 2px 2px 0;
+ padding: 0;
+ background: none;
+ border: none;
+ cursor: pointer;
+}
+
+.jp-tocItem-collapser:hover {
+ background-color: var(--jp-layout-color3);
+}
+
+/* Active heading indicator */
+
+.jp-tocItem-heading::before {
+ content: ' ';
+ background: transparent;
+ width: var(--jp-private-toc-active-width);
+ height: 24px;
+ position: absolute;
+ left: 0;
+ border-radius: var(--jp-border-radius);
+}
+
+.jp-tocItem-heading.jp-tocItem-active::before {
+ background-color: var(--jp-brand-color1);
+}
+
+.jp-tocItem-heading:hover.jp-tocItem-active::before {
+ background: var(--jp-brand-color0);
+ opacity: 1;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+.jp-Collapser {
+ flex: 0 0 var(--jp-cell-collapser-width);
+ padding: 0;
+ margin: 0;
+ border: none;
+ outline: none;
+ background: transparent;
+ border-radius: var(--jp-border-radius);
+ opacity: 1;
+}
+
+.jp-Collapser-child {
+ display: block;
+ width: 100%;
+ box-sizing: border-box;
+
+ /* height: 100% doesn't work because the height of its parent is computed from content */
+ position: absolute;
+ top: 0;
+ bottom: 0;
+}
+
+/*-----------------------------------------------------------------------------
+| Printing
+|----------------------------------------------------------------------------*/
+
+/*
+Hiding collapsers in print mode.
+
+Note: input and output wrappers have "display: block" propery in print mode.
+*/
+
+@media print {
+ .jp-Collapser {
+ display: none;
+ }
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Header/Footer
+|----------------------------------------------------------------------------*/
+
+/* Hidden by zero height by default */
+.jp-CellHeader,
+.jp-CellFooter {
+ height: 0;
+ width: 100%;
+ padding: 0;
+ margin: 0;
+ border: none;
+ outline: none;
+ background: transparent;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Input
+|----------------------------------------------------------------------------*/
+
+/* All input areas */
+.jp-InputArea {
+ display: table;
+ table-layout: fixed;
+ width: 100%;
+ overflow: hidden;
+}
+
+.jp-InputArea-editor {
+ display: table-cell;
+ overflow: hidden;
+ vertical-align: top;
+
+ /* This is the non-active, default styling */
+ border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
+ border-radius: 0;
+ background: var(--jp-cell-editor-background);
+}
+
+.jp-InputPrompt {
+ display: table-cell;
+ vertical-align: top;
+ width: var(--jp-cell-prompt-width);
+ color: var(--jp-cell-inprompt-font-color);
+ font-family: var(--jp-cell-prompt-font-family);
+ padding: var(--jp-code-padding);
+ letter-spacing: var(--jp-cell-prompt-letter-spacing);
+ opacity: var(--jp-cell-prompt-opacity);
+ line-height: var(--jp-code-line-height);
+ font-size: var(--jp-code-font-size);
+ border: var(--jp-border-width) solid transparent;
+
+ /* Right align prompt text, don't wrap to handle large prompt numbers */
+ text-align: right;
+ white-space: nowrap;
+ overflow: hidden;
+ text-overflow: ellipsis;
+
+ /* Disable text selection */
+ -webkit-user-select: none;
+ -moz-user-select: none;
+ -ms-user-select: none;
+ user-select: none;
+}
+
+/*-----------------------------------------------------------------------------
+| Mobile
+|----------------------------------------------------------------------------*/
+@media only screen and (max-width: 760px) {
+ .jp-InputArea-editor {
+ display: table-row;
+ margin-left: var(--jp-notebook-padding);
+ }
+
+ .jp-InputPrompt {
+ display: table-row;
+ text-align: left;
+ }
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Placeholder
+|----------------------------------------------------------------------------*/
+
+.jp-Placeholder {
+ display: table;
+ table-layout: fixed;
+ width: 100%;
+}
+
+.jp-Placeholder-prompt {
+ display: table-cell;
+ box-sizing: border-box;
+}
+
+.jp-Placeholder-content {
+ display: table-cell;
+ padding: 4px 6px;
+ border: 1px solid transparent;
+ border-radius: 0;
+ background: none;
+ box-sizing: border-box;
+ cursor: pointer;
+}
+
+.jp-Placeholder-contentContainer {
+ display: flex;
+}
+
+.jp-Placeholder-content:hover,
+.jp-InputPlaceholder > .jp-Placeholder-content:hover {
+ border-color: var(--jp-layout-color3);
+}
+
+.jp-Placeholder-content .jp-MoreHorizIcon {
+ width: 32px;
+ height: 16px;
+ border: 1px solid transparent;
+ border-radius: var(--jp-border-radius);
+}
+
+.jp-Placeholder-content .jp-MoreHorizIcon:hover {
+ border: 1px solid var(--jp-border-color1);
+ box-shadow: 0 0 2px 0 rgba(0, 0, 0, 0.25);
+ background-color: var(--jp-layout-color0);
+}
+
+.jp-PlaceholderText {
+ white-space: nowrap;
+ overflow-x: hidden;
+ color: var(--jp-inverse-layout-color3);
+ font-family: var(--jp-code-font-family);
+}
+
+.jp-InputPlaceholder > .jp-Placeholder-content {
+ border-color: var(--jp-cell-editor-border-color);
+ background: var(--jp-cell-editor-background);
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Private CSS variables
+|----------------------------------------------------------------------------*/
+
+:root {
+ --jp-private-cell-scrolling-output-offset: 5px;
+}
+
+/*-----------------------------------------------------------------------------
+| Cell
+|----------------------------------------------------------------------------*/
+
+.jp-Cell {
+ padding: var(--jp-cell-padding);
+ margin: 0;
+ border: none;
+ outline: none;
+ background: transparent;
+}
+
+/*-----------------------------------------------------------------------------
+| Common input/output
+|----------------------------------------------------------------------------*/
+
+.jp-Cell-inputWrapper,
+.jp-Cell-outputWrapper {
+ display: flex;
+ flex-direction: row;
+ padding: 0;
+ margin: 0;
+
+ /* Added to reveal the box-shadow on the input and output collapsers. */
+ overflow: visible;
+}
+
+/* Only input/output areas inside cells */
+.jp-Cell-inputArea,
+.jp-Cell-outputArea {
+ flex: 1 1 auto;
+}
+
+/*-----------------------------------------------------------------------------
+| Collapser
+|----------------------------------------------------------------------------*/
+
+/* Make the output collapser disappear when there is not output, but do so
+ * in a manner that leaves it in the layout and preserves its width.
+ */
+.jp-Cell.jp-mod-noOutputs .jp-Cell-outputCollapser {
+ border: none !important;
+ background: transparent !important;
+}
+
+.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputCollapser {
+ min-height: var(--jp-cell-collapser-min-height);
+}
+
+/*-----------------------------------------------------------------------------
+| Output
+|----------------------------------------------------------------------------*/
+
+/* Put a space between input and output when there IS output */
+.jp-Cell:not(.jp-mod-noOutputs) .jp-Cell-outputWrapper {
+ margin-top: 5px;
+}
+
+.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea {
+ overflow-y: auto;
+ max-height: 24em;
+ margin-left: var(--jp-private-cell-scrolling-output-offset);
+ resize: vertical;
+}
+
+.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea[style*='height'] {
+ max-height: unset;
+}
+
+.jp-CodeCell.jp-mod-outputsScrolled .jp-Cell-outputArea::after {
+ content: ' ';
+ box-shadow: inset 0 0 6px 2px rgb(0 0 0 / 30%);
+ width: 100%;
+ height: 100%;
+ position: sticky;
+ bottom: 0;
+ top: 0;
+ margin-top: -50%;
+ float: left;
+ display: block;
+ pointer-events: none;
+}
+
+.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-child {
+ padding-top: 6px;
+}
+
+.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-prompt {
+ width: calc(
+ var(--jp-cell-prompt-width) - var(--jp-private-cell-scrolling-output-offset)
+ );
+}
+
+.jp-CodeCell.jp-mod-outputsScrolled .jp-OutputArea-promptOverlay {
+ left: calc(-1 * var(--jp-private-cell-scrolling-output-offset));
+}
+
+/*-----------------------------------------------------------------------------
+| CodeCell
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| MarkdownCell
+|----------------------------------------------------------------------------*/
+
+.jp-MarkdownOutput {
+ display: table-cell;
+ width: 100%;
+ margin-top: 0;
+ margin-bottom: 0;
+ padding-left: var(--jp-code-padding);
+}
+
+.jp-MarkdownOutput.jp-RenderedHTMLCommon {
+ overflow: auto;
+}
+
+/* collapseHeadingButton (show always if hiddenCellsButton is _not_ shown) */
+.jp-collapseHeadingButton {
+ display: flex;
+ min-height: var(--jp-cell-collapser-min-height);
+ font-size: var(--jp-code-font-size);
+ position: absolute;
+ background-color: transparent;
+ background-size: 25px;
+ background-repeat: no-repeat;
+ background-position-x: center;
+ background-position-y: top;
+ background-image: var(--jp-icon-caret-down);
+ right: 0;
+ top: 0;
+ bottom: 0;
+}
+
+.jp-collapseHeadingButton.jp-mod-collapsed {
+ background-image: var(--jp-icon-caret-right);
+}
+
+/*
+ set the container font size to match that of content
+ so that the nested collapse buttons have the right size
+*/
+.jp-MarkdownCell .jp-InputPrompt {
+ font-size: var(--jp-content-font-size1);
+}
+
+/*
+ Align collapseHeadingButton with cell top header
+ The font sizes are identical to the ones in packages/rendermime/style/base.css
+*/
+.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='1'] {
+ font-size: var(--jp-content-font-size5);
+ background-position-y: calc(0.3 * var(--jp-content-font-size5));
+}
+
+.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='2'] {
+ font-size: var(--jp-content-font-size4);
+ background-position-y: calc(0.3 * var(--jp-content-font-size4));
+}
+
+.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='3'] {
+ font-size: var(--jp-content-font-size3);
+ background-position-y: calc(0.3 * var(--jp-content-font-size3));
+}
+
+.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='4'] {
+ font-size: var(--jp-content-font-size2);
+ background-position-y: calc(0.3 * var(--jp-content-font-size2));
+}
+
+.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='5'] {
+ font-size: var(--jp-content-font-size1);
+ background-position-y: top;
+}
+
+.jp-mod-rendered .jp-collapseHeadingButton[data-heading-level='6'] {
+ font-size: var(--jp-content-font-size0);
+ background-position-y: top;
+}
+
+/* collapseHeadingButton (show only on (hover,active) if hiddenCellsButton is shown) */
+.jp-Notebook.jp-mod-showHiddenCellsButton .jp-collapseHeadingButton {
+ display: none;
+}
+
+.jp-Notebook.jp-mod-showHiddenCellsButton
+ :is(.jp-MarkdownCell:hover, .jp-mod-active)
+ .jp-collapseHeadingButton {
+ display: flex;
+}
+
+/* showHiddenCellsButton (only show if jp-mod-showHiddenCellsButton is set, which
+is a consequence of the showHiddenCellsButton option in Notebook Settings)*/
+.jp-Notebook.jp-mod-showHiddenCellsButton .jp-showHiddenCellsButton {
+ margin-left: calc(var(--jp-cell-prompt-width) + 2 * var(--jp-code-padding));
+ margin-top: var(--jp-code-padding);
+ border: 1px solid var(--jp-border-color2);
+ background-color: var(--jp-border-color3) !important;
+ color: var(--jp-content-font-color0) !important;
+ display: flex;
+}
+
+.jp-Notebook.jp-mod-showHiddenCellsButton .jp-showHiddenCellsButton:hover {
+ background-color: var(--jp-border-color2) !important;
+}
+
+.jp-showHiddenCellsButton {
+ display: none;
+}
+
+/*-----------------------------------------------------------------------------
+| Printing
+|----------------------------------------------------------------------------*/
+
+/*
+Using block instead of flex to allow the use of the break-inside CSS property for
+cell outputs.
+*/
+
+@media print {
+ .jp-Cell-inputWrapper,
+ .jp-Cell-outputWrapper {
+ display: block;
+ }
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Variables
+|----------------------------------------------------------------------------*/
+
+:root {
+ --jp-notebook-toolbar-padding: 2px 5px 2px 2px;
+}
+
+/*-----------------------------------------------------------------------------
+
+/*-----------------------------------------------------------------------------
+| Styles
+|----------------------------------------------------------------------------*/
+
+.jp-NotebookPanel-toolbar {
+ padding: var(--jp-notebook-toolbar-padding);
+
+ /* disable paint containment from lumino 2.0 default strict CSS containment */
+ contain: style size !important;
+}
+
+.jp-Toolbar-item.jp-Notebook-toolbarCellType .jp-select-wrapper.jp-mod-focused {
+ border: none;
+ box-shadow: none;
+}
+
+.jp-Notebook-toolbarCellTypeDropdown select {
+ height: 24px;
+ font-size: var(--jp-ui-font-size1);
+ line-height: 14px;
+ border-radius: 0;
+ display: block;
+}
+
+.jp-Notebook-toolbarCellTypeDropdown span {
+ top: 5px !important;
+}
+
+.jp-Toolbar-responsive-popup {
+ position: absolute;
+ height: fit-content;
+ display: flex;
+ flex-direction: row;
+ flex-wrap: wrap;
+ justify-content: flex-end;
+ border-bottom: var(--jp-border-width) solid var(--jp-toolbar-border-color);
+ box-shadow: var(--jp-toolbar-box-shadow);
+ background: var(--jp-toolbar-background);
+ min-height: var(--jp-toolbar-micro-height);
+ padding: var(--jp-notebook-toolbar-padding);
+ z-index: 1;
+ right: 0;
+ top: 0;
+}
+
+.jp-Toolbar > .jp-Toolbar-responsive-opener {
+ margin-left: auto;
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Variables
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+
+/*-----------------------------------------------------------------------------
+| Styles
+|----------------------------------------------------------------------------*/
+
+.jp-Notebook-ExecutionIndicator {
+ position: relative;
+ display: inline-block;
+ height: 100%;
+ z-index: 9997;
+}
+
+.jp-Notebook-ExecutionIndicator-tooltip {
+ visibility: hidden;
+ height: auto;
+ width: max-content;
+ width: -moz-max-content;
+ background-color: var(--jp-layout-color2);
+ color: var(--jp-ui-font-color1);
+ text-align: justify;
+ border-radius: 6px;
+ padding: 0 5px;
+ position: fixed;
+ display: table;
+}
+
+.jp-Notebook-ExecutionIndicator-tooltip.up {
+ transform: translateX(-50%) translateY(-100%) translateY(-32px);
+}
+
+.jp-Notebook-ExecutionIndicator-tooltip.down {
+ transform: translateX(calc(-100% + 16px)) translateY(5px);
+}
+
+.jp-Notebook-ExecutionIndicator-tooltip.hidden {
+ display: none;
+}
+
+.jp-Notebook-ExecutionIndicator:hover .jp-Notebook-ExecutionIndicator-tooltip {
+ visibility: visible;
+}
+
+.jp-Notebook-ExecutionIndicator span {
+ font-size: var(--jp-ui-font-size1);
+ font-family: var(--jp-ui-font-family);
+ color: var(--jp-ui-font-color1);
+ line-height: 24px;
+ display: block;
+}
+
+.jp-Notebook-ExecutionIndicator-progress-bar {
+ display: flex;
+ justify-content: center;
+ height: 100%;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+/*
+ * Execution indicator
+ */
+.jp-tocItem-content::after {
+ content: '';
+
+ /* Must be identical to form a circle */
+ width: 12px;
+ height: 12px;
+ background: none;
+ border: none;
+ position: absolute;
+ right: 0;
+}
+
+.jp-tocItem-content[data-running='0']::after {
+ border-radius: 50%;
+ border: var(--jp-border-width) solid var(--jp-inverse-layout-color3);
+ background: none;
+}
+
+.jp-tocItem-content[data-running='1']::after {
+ border-radius: 50%;
+ border: var(--jp-border-width) solid var(--jp-inverse-layout-color3);
+ background-color: var(--jp-inverse-layout-color3);
+}
+
+.jp-tocItem-content[data-running='0'],
+.jp-tocItem-content[data-running='1'] {
+ margin-right: 12px;
+}
+
+/*
+ * Copyright (c) Jupyter Development Team.
+ * Distributed under the terms of the Modified BSD License.
+ */
+
+.jp-Notebook-footer {
+ height: 27px;
+ margin-left: calc(
+ var(--jp-cell-prompt-width) + var(--jp-cell-collapser-width) +
+ var(--jp-cell-padding)
+ );
+ width: calc(
+ 100% -
+ (
+ var(--jp-cell-prompt-width) + var(--jp-cell-collapser-width) +
+ var(--jp-cell-padding) + var(--jp-cell-padding)
+ )
+ );
+ border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
+ color: var(--jp-ui-font-color3);
+ margin-top: 6px;
+ background: none;
+ cursor: pointer;
+}
+
+.jp-Notebook-footer:focus {
+ border-color: var(--jp-cell-editor-active-border-color);
+}
+
+/* For devices that support hovering, hide footer until hover */
+@media (hover: hover) {
+ .jp-Notebook-footer {
+ opacity: 0;
+ }
+
+ .jp-Notebook-footer:focus,
+ .jp-Notebook-footer:hover {
+ opacity: 1;
+ }
+}
+
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| Imports
+|----------------------------------------------------------------------------*/
+
+/*-----------------------------------------------------------------------------
+| CSS variables
+|----------------------------------------------------------------------------*/
+
+:root {
+ --jp-side-by-side-output-size: 1fr;
+ --jp-side-by-side-resized-cell: var(--jp-side-by-side-output-size);
+ --jp-private-notebook-dragImage-width: 304px;
+ --jp-private-notebook-dragImage-height: 36px;
+ --jp-private-notebook-selected-color: var(--md-blue-400);
+ --jp-private-notebook-active-color: var(--md-green-400);
+}
+
+/*-----------------------------------------------------------------------------
+| Notebook
+|----------------------------------------------------------------------------*/
+
+/* stylelint-disable selector-max-class */
+
+.jp-NotebookPanel {
+ display: block;
+ height: 100%;
+}
+
+.jp-NotebookPanel.jp-Document {
+ min-width: 240px;
+ min-height: 120px;
+}
+
+.jp-Notebook {
+ padding: var(--jp-notebook-padding);
+ outline: none;
+ overflow: auto;
+ background: var(--jp-layout-color0);
+}
+
+.jp-Notebook.jp-mod-scrollPastEnd::after {
+ display: block;
+ content: '';
+ min-height: var(--jp-notebook-scroll-padding);
+}
+
+.jp-MainAreaWidget-ContainStrict .jp-Notebook * {
+ contain: strict;
+}
+
+.jp-Notebook .jp-Cell {
+ overflow: visible;
+}
+
+.jp-Notebook .jp-Cell .jp-InputPrompt {
+ cursor: move;
+}
+
+/*-----------------------------------------------------------------------------
+| Notebook state related styling
+|
+| The notebook and cells each have states, here are the possibilities:
+|
+| - Notebook
+| - Command
+| - Edit
+| - Cell
+| - None
+| - Active (only one can be active)
+| - Selected (the cells actions are applied to)
+| - Multiselected (when multiple selected, the cursor)
+| - No outputs
+|----------------------------------------------------------------------------*/
+
+/* Command or edit modes */
+
+.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-InputPrompt {
+ opacity: var(--jp-cell-prompt-not-active-opacity);
+ color: var(--jp-cell-prompt-not-active-font-color);
+}
+
+.jp-Notebook .jp-Cell:not(.jp-mod-active) .jp-OutputPrompt {
+ opacity: var(--jp-cell-prompt-not-active-opacity);
+ color: var(--jp-cell-prompt-not-active-font-color);
+}
+
+/* cell is active */
+.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser {
+ background: var(--jp-brand-color1);
+}
+
+/* cell is dirty */
+.jp-Notebook .jp-Cell.jp-mod-dirty .jp-InputPrompt {
+ color: var(--jp-warn-color1);
+}
+
+.jp-Notebook .jp-Cell.jp-mod-dirty .jp-InputPrompt::before {
+ color: var(--jp-warn-color1);
+ content: '•';
+}
+
+.jp-Notebook .jp-Cell.jp-mod-active.jp-mod-dirty .jp-Collapser {
+ background: var(--jp-warn-color1);
+}
+
+/* collapser is hovered */
+.jp-Notebook .jp-Cell .jp-Collapser:hover {
+ box-shadow: var(--jp-elevation-z2);
+ background: var(--jp-brand-color1);
+ opacity: var(--jp-cell-collapser-not-active-hover-opacity);
+}
+
+/* cell is active and collapser is hovered */
+.jp-Notebook .jp-Cell.jp-mod-active .jp-Collapser:hover {
+ background: var(--jp-brand-color0);
+ opacity: 1;
+}
+
+/* Command mode */
+
+.jp-Notebook.jp-mod-commandMode .jp-Cell.jp-mod-selected {
+ background: var(--jp-notebook-multiselected-color);
+}
+
+.jp-Notebook.jp-mod-commandMode
+ .jp-Cell.jp-mod-active.jp-mod-selected:not(.jp-mod-multiSelected) {
+ background: transparent;
+}
+
+/* Edit mode */
+
+.jp-Notebook.jp-mod-editMode .jp-Cell.jp-mod-active .jp-InputArea-editor {
+ border: var(--jp-border-width) solid var(--jp-cell-editor-active-border-color);
+ box-shadow: var(--jp-input-box-shadow);
+ background-color: var(--jp-cell-editor-active-background);
+}
+
+/*-----------------------------------------------------------------------------
+| Notebook drag and drop
+|----------------------------------------------------------------------------*/
+
+.jp-Notebook-cell.jp-mod-dropSource {
+ opacity: 0.5;
+}
+
+.jp-Notebook-cell.jp-mod-dropTarget,
+.jp-Notebook.jp-mod-commandMode
+ .jp-Notebook-cell.jp-mod-active.jp-mod-selected.jp-mod-dropTarget {
+ border-top-color: var(--jp-private-notebook-selected-color);
+ border-top-style: solid;
+ border-top-width: 2px;
+}
+
+.jp-dragImage {
+ display: block;
+ flex-direction: row;
+ width: var(--jp-private-notebook-dragImage-width);
+ height: var(--jp-private-notebook-dragImage-height);
+ border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
+ background: var(--jp-cell-editor-background);
+ overflow: visible;
+}
+
+.jp-dragImage-singlePrompt {
+ box-shadow: 2px 2px 4px 0 rgba(0, 0, 0, 0.12);
+}
+
+.jp-dragImage .jp-dragImage-content {
+ flex: 1 1 auto;
+ z-index: 2;
+ font-size: var(--jp-code-font-size);
+ font-family: var(--jp-code-font-family);
+ line-height: var(--jp-code-line-height);
+ padding: var(--jp-code-padding);
+ border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
+ background: var(--jp-cell-editor-background-color);
+ color: var(--jp-content-font-color3);
+ text-align: left;
+ margin: 4px 4px 4px 0;
+}
+
+.jp-dragImage .jp-dragImage-prompt {
+ flex: 0 0 auto;
+ min-width: 36px;
+ color: var(--jp-cell-inprompt-font-color);
+ padding: var(--jp-code-padding);
+ padding-left: 12px;
+ font-family: var(--jp-cell-prompt-font-family);
+ letter-spacing: var(--jp-cell-prompt-letter-spacing);
+ line-height: 1.9;
+ font-size: var(--jp-code-font-size);
+ border: var(--jp-border-width) solid transparent;
+}
+
+.jp-dragImage-multipleBack {
+ z-index: -1;
+ position: absolute;
+ height: 32px;
+ width: 300px;
+ top: 8px;
+ left: 8px;
+ background: var(--jp-layout-color2);
+ border: var(--jp-border-width) solid var(--jp-input-border-color);
+ box-shadow: 2px 2px 4px 0 rgba(0, 0, 0, 0.12);
+}
+
+/*-----------------------------------------------------------------------------
+| Cell toolbar
+|----------------------------------------------------------------------------*/
+
+.jp-NotebookTools {
+ display: block;
+ min-width: var(--jp-sidebar-min-width);
+ color: var(--jp-ui-font-color1);
+ background: var(--jp-layout-color1);
+
+ /* This is needed so that all font sizing of children done in ems is
+ * relative to this base size */
+ font-size: var(--jp-ui-font-size1);
+ overflow: auto;
+}
+
+.jp-ActiveCellTool {
+ padding: 12px 0;
+ display: flex;
+}
+
+.jp-ActiveCellTool-Content {
+ flex: 1 1 auto;
+}
+
+.jp-ActiveCellTool .jp-ActiveCellTool-CellContent {
+ background: var(--jp-cell-editor-background);
+ border: var(--jp-border-width) solid var(--jp-cell-editor-border-color);
+ border-radius: 0;
+ min-height: 29px;
+}
+
+.jp-ActiveCellTool .jp-InputPrompt {
+ min-width: calc(var(--jp-cell-prompt-width) * 0.75);
+}
+
+.jp-ActiveCellTool-CellContent > pre {
+ padding: 5px 4px;
+ margin: 0;
+ white-space: normal;
+}
+
+.jp-MetadataEditorTool {
+ flex-direction: column;
+ padding: 12px 0;
+}
+
+.jp-RankedPanel > :not(:first-child) {
+ margin-top: 12px;
+}
+
+.jp-KeySelector select.jp-mod-styled {
+ font-size: var(--jp-ui-font-size1);
+ color: var(--jp-ui-font-color0);
+ border: var(--jp-border-width) solid var(--jp-border-color1);
+}
+
+.jp-KeySelector label,
+.jp-MetadataEditorTool label,
+.jp-NumberSetter label {
+ line-height: 1.4;
+}
+
+.jp-NotebookTools .jp-select-wrapper {
+ margin-top: 4px;
+ margin-bottom: 0;
+}
+
+.jp-NumberSetter input {
+ width: 100%;
+ margin-top: 4px;
+}
+
+.jp-NotebookTools .jp-Collapse {
+ margin-top: 16px;
+}
+
+/*-----------------------------------------------------------------------------
+| Presentation Mode (.jp-mod-presentationMode)
+|----------------------------------------------------------------------------*/
+
+.jp-mod-presentationMode .jp-Notebook {
+ --jp-content-font-size1: var(--jp-content-presentation-font-size1);
+ --jp-code-font-size: var(--jp-code-presentation-font-size);
+}
+
+.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-InputPrompt,
+.jp-mod-presentationMode .jp-Notebook .jp-Cell .jp-OutputPrompt {
+ flex: 0 0 110px;
+}
+
+/*-----------------------------------------------------------------------------
+| Side-by-side Mode (.jp-mod-sideBySide)
+|----------------------------------------------------------------------------*/
+.jp-mod-sideBySide.jp-Notebook .jp-Notebook-cell {
+ margin-top: 3em;
+ margin-bottom: 3em;
+ margin-left: 5%;
+ margin-right: 5%;
+}
+
+.jp-mod-sideBySide.jp-Notebook .jp-CodeCell {
+ display: grid;
+ grid-template-columns: minmax(0, 1fr) min-content minmax(
+ 0,
+ var(--jp-side-by-side-output-size)
+ );
+ grid-template-rows: auto minmax(0, 1fr) auto;
+ grid-template-areas:
+ 'header header header'
+ 'input handle output'
+ 'footer footer footer';
+}
+
+.jp-mod-sideBySide.jp-Notebook .jp-CodeCell.jp-mod-resizedCell {
+ grid-template-columns: minmax(0, 1fr) min-content minmax(
+ 0,
+ var(--jp-side-by-side-resized-cell)
+ );
+}
+
+.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellHeader {
+ grid-area: header;
+}
+
+.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-Cell-inputWrapper {
+ grid-area: input;
+}
+
+.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-Cell-outputWrapper {
+ /* overwrite the default margin (no vertical separation needed in side by side move */
+ margin-top: 0;
+ grid-area: output;
+}
+
+.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellFooter {
+ grid-area: footer;
+}
+
+.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellResizeHandle {
+ grid-area: handle;
+ user-select: none;
+ display: block;
+ height: 100%;
+ cursor: ew-resize;
+ padding: 0 var(--jp-cell-padding);
+}
+
+.jp-mod-sideBySide.jp-Notebook .jp-CodeCell .jp-CellResizeHandle::after {
+ content: '';
+ display: block;
+ background: var(--jp-border-color2);
+ height: 100%;
+ width: 5px;
+}
+
+.jp-mod-sideBySide.jp-Notebook
+ .jp-CodeCell.jp-mod-resizedCell
+ .jp-CellResizeHandle::after {
+ background: var(--jp-border-color0);
+}
+
+.jp-CellResizeHandle {
+ display: none;
+}
+
+/*-----------------------------------------------------------------------------
+| Placeholder
+|----------------------------------------------------------------------------*/
+
+.jp-Cell-Placeholder {
+ padding-left: 55px;
+}
+
+.jp-Cell-Placeholder-wrapper {
+ background: #fff;
+ border: 1px solid;
+ border-color: #e5e6e9 #dfe0e4 #d0d1d5;
+ border-radius: 4px;
+ -webkit-border-radius: 4px;
+ margin: 10px 15px;
+}
+
+.jp-Cell-Placeholder-wrapper-inner {
+ padding: 15px;
+ position: relative;
+}
+
+.jp-Cell-Placeholder-wrapper-body {
+ background-repeat: repeat;
+ background-size: 50% auto;
+}
+
+.jp-Cell-Placeholder-wrapper-body div {
+ background: #f6f7f8;
+ background-image: -webkit-linear-gradient(
+ left,
+ #f6f7f8 0%,
+ #edeef1 20%,
+ #f6f7f8 40%,
+ #f6f7f8 100%
+ );
+ background-repeat: no-repeat;
+ background-size: 800px 104px;
+ height: 104px;
+ position: absolute;
+ right: 15px;
+ left: 15px;
+ top: 15px;
+}
+
+div.jp-Cell-Placeholder-h1 {
+ top: 20px;
+ height: 20px;
+ left: 15px;
+ width: 150px;
+}
+
+div.jp-Cell-Placeholder-h2 {
+ left: 15px;
+ top: 50px;
+ height: 10px;
+ width: 100px;
+}
+
+div.jp-Cell-Placeholder-content-1,
+div.jp-Cell-Placeholder-content-2,
+div.jp-Cell-Placeholder-content-3 {
+ left: 15px;
+ right: 15px;
+ height: 10px;
+}
+
+div.jp-Cell-Placeholder-content-1 {
+ top: 100px;
+}
+
+div.jp-Cell-Placeholder-content-2 {
+ top: 120px;
+}
+
+div.jp-Cell-Placeholder-content-3 {
+ top: 140px;
+}
+
+</style>
+<style type="text/css">
+/*-----------------------------------------------------------------------------
+| Copyright (c) Jupyter Development Team.
+| Distributed under the terms of the Modified BSD License.
+|----------------------------------------------------------------------------*/
+
+/*
+The following CSS variables define the main, public API for styling JupyterLab.
+These variables should be used by all plugins wherever possible. In other
+words, plugins should not define custom colors, sizes, etc unless absolutely
+necessary. This enables users to change the visual theme of JupyterLab
+by changing these variables.
+
+Many variables appear in an ordered sequence (0,1,2,3). These sequences
+are designed to work well together, so for example, `--jp-border-color1` should
+be used with `--jp-layout-color1`. The numbers have the following meanings:
+
+* 0: super-primary, reserved for special emphasis
+* 1: primary, most important under normal situations
+* 2: secondary, next most important under normal situations
+* 3: tertiary, next most important under normal situations
+
+Throughout JupyterLab, we are mostly following principles from Google's
+Material Design when selecting colors. We are not, however, following
+all of MD as it is not optimized for dense, information rich UIs.
+*/
+
+:root {
+ /* Elevation
+ *
+ * We style box-shadows using Material Design's idea of elevation. These particular numbers are taken from here:
+ *
+ * https://github.com/material-components/material-components-web
+ * https://material-components-web.appspot.com/elevation.html
+ */
+
+ --jp-shadow-base-lightness: 0;
+ --jp-shadow-umbra-color: rgba(
+ var(--jp-shadow-base-lightness),
+ var(--jp-shadow-base-lightness),
+ var(--jp-shadow-base-lightness),
+ 0.2
+ );
+ --jp-shadow-penumbra-color: rgba(
+ var(--jp-shadow-base-lightness),
+ var(--jp-shadow-base-lightness),
+ var(--jp-shadow-base-lightness),
+ 0.14
+ );
+ --jp-shadow-ambient-color: rgba(
+ var(--jp-shadow-base-lightness),
+ var(--jp-shadow-base-lightness),
+ var(--jp-shadow-base-lightness),
+ 0.12
+ );
+ --jp-elevation-z0: none;
+ --jp-elevation-z1: 0 2px 1px -1px var(--jp-shadow-umbra-color),
+ 0 1px 1px 0 var(--jp-shadow-penumbra-color),
+ 0 1px 3px 0 var(--jp-shadow-ambient-color);
+ --jp-elevation-z2: 0 3px 1px -2px var(--jp-shadow-umbra-color),
+ 0 2px 2px 0 var(--jp-shadow-penumbra-color),
+ 0 1px 5px 0 var(--jp-shadow-ambient-color);
+ --jp-elevation-z4: 0 2px 4px -1px var(--jp-shadow-umbra-color),
+ 0 4px 5px 0 var(--jp-shadow-penumbra-color),
+ 0 1px 10px 0 var(--jp-shadow-ambient-color);
+ --jp-elevation-z6: 0 3px 5px -1px var(--jp-shadow-umbra-color),
+ 0 6px 10px 0 var(--jp-shadow-penumbra-color),
+ 0 1px 18px 0 var(--jp-shadow-ambient-color);
+ --jp-elevation-z8: 0 5px 5px -3px var(--jp-shadow-umbra-color),
+ 0 8px 10px 1px var(--jp-shadow-penumbra-color),
+ 0 3px 14px 2px var(--jp-shadow-ambient-color);
+ --jp-elevation-z12: 0 7px 8px -4px var(--jp-shadow-umbra-color),
+ 0 12px 17px 2px var(--jp-shadow-penumbra-color),
+ 0 5px 22px 4px var(--jp-shadow-ambient-color);
+ --jp-elevation-z16: 0 8px 10px -5px var(--jp-shadow-umbra-color),
+ 0 16px 24px 2px var(--jp-shadow-penumbra-color),
+ 0 6px 30px 5px var(--jp-shadow-ambient-color);
+ --jp-elevation-z20: 0 10px 13px -6px var(--jp-shadow-umbra-color),
+ 0 20px 31px 3px var(--jp-shadow-penumbra-color),
+ 0 8px 38px 7px var(--jp-shadow-ambient-color);
+ --jp-elevation-z24: 0 11px 15px -7px var(--jp-shadow-umbra-color),
+ 0 24px 38px 3px var(--jp-shadow-penumbra-color),
+ 0 9px 46px 8px var(--jp-shadow-ambient-color);
+
+ /* Borders
+ *
+ * The following variables, specify the visual styling of borders in JupyterLab.
+ */
+
+ --jp-border-width: 1px;
+ --jp-border-color0: var(--md-grey-400);
+ --jp-border-color1: var(--md-grey-400);
+ --jp-border-color2: var(--md-grey-300);
+ --jp-border-color3: var(--md-grey-200);
+ --jp-inverse-border-color: var(--md-grey-600);
+ --jp-border-radius: 2px;
+
+ /* UI Fonts
+ *
+ * The UI font CSS variables are used for the typography all of the JupyterLab
+ * user interface elements that are not directly user generated content.
+ *
+ * The font sizing here is done assuming that the body font size of --jp-ui-font-size1
+ * is applied to a parent element. When children elements, such as headings, are sized
+ * in em all things will be computed relative to that body size.
+ */
+
+ --jp-ui-font-scale-factor: 1.2;
+ --jp-ui-font-size0: 0.83333em;
+ --jp-ui-font-size1: 13px; /* Base font size */
+ --jp-ui-font-size2: 1.2em;
+ --jp-ui-font-size3: 1.44em;
+ --jp-ui-font-family: system-ui, -apple-system, blinkmacsystemfont, 'Segoe UI',
+ helvetica, arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji',
+ 'Segoe UI Symbol';
+
+ /*
+ * Use these font colors against the corresponding main layout colors.
+ * In a light theme, these go from dark to light.
+ */
+
+ /* Defaults use Material Design specification */
+ --jp-ui-font-color0: rgba(0, 0, 0, 1);
+ --jp-ui-font-color1: rgba(0, 0, 0, 0.87);
+ --jp-ui-font-color2: rgba(0, 0, 0, 0.54);
+ --jp-ui-font-color3: rgba(0, 0, 0, 0.38);
+
+ /*
+ * Use these against the brand/accent/warn/error colors.
+ * These will typically go from light to darker, in both a dark and light theme.
+ */
+
+ --jp-ui-inverse-font-color0: rgba(255, 255, 255, 1);
+ --jp-ui-inverse-font-color1: rgba(255, 255, 255, 1);
+ --jp-ui-inverse-font-color2: rgba(255, 255, 255, 0.7);
+ --jp-ui-inverse-font-color3: rgba(255, 255, 255, 0.5);
+
+ /* Content Fonts
+ *
+ * Content font variables are used for typography of user generated content.
+ *
+ * The font sizing here is done assuming that the body font size of --jp-content-font-size1
+ * is applied to a parent element. When children elements, such as headings, are sized
+ * in em all things will be computed relative to that body size.
+ */
+
+ --jp-content-line-height: 1.6;
+ --jp-content-font-scale-factor: 1.2;
+ --jp-content-font-size0: 0.83333em;
+ --jp-content-font-size1: 14px; /* Base font size */
+ --jp-content-font-size2: 1.2em;
+ --jp-content-font-size3: 1.44em;
+ --jp-content-font-size4: 1.728em;
+ --jp-content-font-size5: 2.0736em;
+
+ /* This gives a magnification of about 125% in presentation mode over normal. */
+ --jp-content-presentation-font-size1: 17px;
+ --jp-content-heading-line-height: 1;
+ --jp-content-heading-margin-top: 1.2em;
+ --jp-content-heading-margin-bottom: 0.8em;
+ --jp-content-heading-font-weight: 500;
+
+ /* Defaults use Material Design specification */
+ --jp-content-font-color0: rgba(0, 0, 0, 1);
+ --jp-content-font-color1: rgba(0, 0, 0, 0.87);
+ --jp-content-font-color2: rgba(0, 0, 0, 0.54);
+ --jp-content-font-color3: rgba(0, 0, 0, 0.38);
+ --jp-content-link-color: var(--md-blue-900);
+ --jp-content-font-family: system-ui, -apple-system, blinkmacsystemfont,
+ 'Segoe UI', helvetica, arial, sans-serif, 'Apple Color Emoji',
+ 'Segoe UI Emoji', 'Segoe UI Symbol';
+
+ /*
+ * Code Fonts
+ *
+ * Code font variables are used for typography of code and other monospaces content.
+ */
+
+ --jp-code-font-size: 13px;
+ --jp-code-line-height: 1.3077; /* 17px for 13px base */
+ --jp-code-padding: 5px; /* 5px for 13px base, codemirror highlighting needs integer px value */
+ --jp-code-font-family-default: menlo, consolas, 'DejaVu Sans Mono', monospace;
+ --jp-code-font-family: var(--jp-code-font-family-default);
+
+ /* This gives a magnification of about 125% in presentation mode over normal. */
+ --jp-code-presentation-font-size: 16px;
+
+ /* may need to tweak cursor width if you change font size */
+ --jp-code-cursor-width0: 1.4px;
+ --jp-code-cursor-width1: 2px;
+ --jp-code-cursor-width2: 4px;
+
+ /* Layout
+ *
+ * The following are the main layout colors use in JupyterLab. In a light
+ * theme these would go from light to dark.
+ */
+
+ --jp-layout-color0: white;
+ --jp-layout-color1: white;
+ --jp-layout-color2: var(--md-grey-200);
+ --jp-layout-color3: var(--md-grey-400);
+ --jp-layout-color4: var(--md-grey-600);
+
+ /* Inverse Layout
+ *
+ * The following are the inverse layout colors use in JupyterLab. In a light
+ * theme these would go from dark to light.
+ */
+
+ --jp-inverse-layout-color0: #111;
+ --jp-inverse-layout-color1: var(--md-grey-900);
+ --jp-inverse-layout-color2: var(--md-grey-800);
+ --jp-inverse-layout-color3: var(--md-grey-700);
+ --jp-inverse-layout-color4: var(--md-grey-600);
+
+ /* Brand/accent */
+
+ --jp-brand-color0: var(--md-blue-900);
+ --jp-brand-color1: var(--md-blue-700);
+ --jp-brand-color2: var(--md-blue-300);
+ --jp-brand-color3: var(--md-blue-100);
+ --jp-brand-color4: var(--md-blue-50);
+ --jp-accent-color0: var(--md-green-900);
+ --jp-accent-color1: var(--md-green-700);
+ --jp-accent-color2: var(--md-green-300);
+ --jp-accent-color3: var(--md-green-100);
+
+ /* State colors (warn, error, success, info) */
+
+ --jp-warn-color0: var(--md-orange-900);
+ --jp-warn-color1: var(--md-orange-700);
+ --jp-warn-color2: var(--md-orange-300);
+ --jp-warn-color3: var(--md-orange-100);
+ --jp-error-color0: var(--md-red-900);
+ --jp-error-color1: var(--md-red-700);
+ --jp-error-color2: var(--md-red-300);
+ --jp-error-color3: var(--md-red-100);
+ --jp-success-color0: var(--md-green-900);
+ --jp-success-color1: var(--md-green-700);
+ --jp-success-color2: var(--md-green-300);
+ --jp-success-color3: var(--md-green-100);
+ --jp-info-color0: var(--md-cyan-900);
+ --jp-info-color1: var(--md-cyan-700);
+ --jp-info-color2: var(--md-cyan-300);
+ --jp-info-color3: var(--md-cyan-100);
+
+ /* Cell specific styles */
+
+ --jp-cell-padding: 5px;
+ --jp-cell-collapser-width: 8px;
+ --jp-cell-collapser-min-height: 20px;
+ --jp-cell-collapser-not-active-hover-opacity: 0.6;
+ --jp-cell-editor-background: var(--md-grey-100);
+ --jp-cell-editor-border-color: var(--md-grey-300);
+ --jp-cell-editor-box-shadow: inset 0 0 2px var(--md-blue-300);
+ --jp-cell-editor-active-background: var(--jp-layout-color0);
+ --jp-cell-editor-active-border-color: var(--jp-brand-color1);
+ --jp-cell-prompt-width: 64px;
+ --jp-cell-prompt-font-family: var(--jp-code-font-family-default);
+ --jp-cell-prompt-letter-spacing: 0;
+ --jp-cell-prompt-opacity: 1;
+ --jp-cell-prompt-not-active-opacity: 0.5;
+ --jp-cell-prompt-not-active-font-color: var(--md-grey-700);
+
+ /* A custom blend of MD grey and blue 600
+ * See https://meyerweb.com/eric/tools/color-blend/#546E7A:1E88E5:5:hex */
+ --jp-cell-inprompt-font-color: #307fc1;
+
+ /* A custom blend of MD grey and orange 600
+ * https://meyerweb.com/eric/tools/color-blend/#546E7A:F4511E:5:hex */
+ --jp-cell-outprompt-font-color: #bf5b3d;
+
+ /* Notebook specific styles */
+
+ --jp-notebook-padding: 10px;
+ --jp-notebook-select-background: var(--jp-layout-color1);
+ --jp-notebook-multiselected-color: var(--md-blue-50);
+
+ /* The scroll padding is calculated to fill enough space at the bottom of the
+ notebook to show one single-line cell (with appropriate padding) at the top
+ when the notebook is scrolled all the way to the bottom. We also subtract one
+ pixel so that no scrollbar appears if we have just one single-line cell in the
+ notebook. This padding is to enable a 'scroll past end' feature in a notebook.
+ */
+ --jp-notebook-scroll-padding: calc(
+ 100% - var(--jp-code-font-size) * var(--jp-code-line-height) -
+ var(--jp-code-padding) - var(--jp-cell-padding) - 1px
+ );
+
+ /* Rendermime styles */
+
+ --jp-rendermime-error-background: #fdd;
+ --jp-rendermime-table-row-background: var(--md-grey-100);
+ --jp-rendermime-table-row-hover-background: var(--md-light-blue-50);
+
+ /* Dialog specific styles */
+
+ --jp-dialog-background: rgba(0, 0, 0, 0.25);
+
+ /* Console specific styles */
+
+ --jp-console-padding: 10px;
+
+ /* Toolbar specific styles */
+
+ --jp-toolbar-border-color: var(--jp-border-color1);
+ --jp-toolbar-micro-height: 8px;
+ --jp-toolbar-background: var(--jp-layout-color1);
+ --jp-toolbar-box-shadow: 0 0 2px 0 rgba(0, 0, 0, 0.24);
+ --jp-toolbar-header-margin: 4px 4px 0 4px;
+ --jp-toolbar-active-background: var(--md-grey-300);
+
+ /* Statusbar specific styles */
+
+ --jp-statusbar-height: 24px;
+
+ /* Input field styles */
+
+ --jp-input-box-shadow: inset 0 0 2px var(--md-blue-300);
+ --jp-input-active-background: var(--jp-layout-color1);
+ --jp-input-hover-background: var(--jp-layout-color1);
+ --jp-input-background: var(--md-grey-100);
+ --jp-input-border-color: var(--jp-inverse-border-color);
+ --jp-input-active-border-color: var(--jp-brand-color1);
+ --jp-input-active-box-shadow-color: rgba(19, 124, 189, 0.3);
+
+ /* General editor styles */
+
+ --jp-editor-selected-background: #d9d9d9;
+ --jp-editor-selected-focused-background: #d7d4f0;
+ --jp-editor-cursor-color: var(--jp-ui-font-color0);
+
+ /* Code mirror specific styles */
+
+ --jp-mirror-editor-keyword-color: #008000;
+ --jp-mirror-editor-atom-color: #88f;
+ --jp-mirror-editor-number-color: #080;
+ --jp-mirror-editor-def-color: #00f;
+ --jp-mirror-editor-variable-color: var(--md-grey-900);
+ --jp-mirror-editor-variable-2-color: rgb(0, 54, 109);
+ --jp-mirror-editor-variable-3-color: #085;
+ --jp-mirror-editor-punctuation-color: #05a;
+ --jp-mirror-editor-property-color: #05a;
+ --jp-mirror-editor-operator-color: #a2f;
+ --jp-mirror-editor-comment-color: #408080;
+ --jp-mirror-editor-string-color: #ba2121;
+ --jp-mirror-editor-string-2-color: #708;
+ --jp-mirror-editor-meta-color: #a2f;
+ --jp-mirror-editor-qualifier-color: #555;
+ --jp-mirror-editor-builtin-color: #008000;
+ --jp-mirror-editor-bracket-color: #997;
+ --jp-mirror-editor-tag-color: #170;
+ --jp-mirror-editor-attribute-color: #00c;
+ --jp-mirror-editor-header-color: blue;
+ --jp-mirror-editor-quote-color: #090;
+ --jp-mirror-editor-link-color: #00c;
+ --jp-mirror-editor-error-color: #f00;
+ --jp-mirror-editor-hr-color: #999;
+
+ /*
+ RTC user specific colors.
+ These colors are used for the cursor, username in the editor,
+ and the icon of the user.
+ */
+
+ --jp-collaborator-color1: #ffad8e;
+ --jp-collaborator-color2: #dac83d;
+ --jp-collaborator-color3: #72dd76;
+ --jp-collaborator-color4: #00e4d0;
+ --jp-collaborator-color5: #45d4ff;
+ --jp-collaborator-color6: #e2b1ff;
+ --jp-collaborator-color7: #ff9de6;
+
+ /* Vega extension styles */
+
+ --jp-vega-background: white;
+
+ /* Sidebar-related styles */
+
+ --jp-sidebar-min-width: 250px;
+
+ /* Search-related styles */
+
+ --jp-search-toggle-off-opacity: 0.5;
+ --jp-search-toggle-hover-opacity: 0.8;
+ --jp-search-toggle-on-opacity: 1;
+ --jp-search-selected-match-background-color: rgb(245, 200, 0);
+ --jp-search-selected-match-color: black;
+ --jp-search-unselected-match-background-color: var(
+ --jp-inverse-layout-color0
+ );
+ --jp-search-unselected-match-color: var(--jp-ui-inverse-font-color0);
+
+ /* Icon colors that work well with light or dark backgrounds */
+ --jp-icon-contrast-color0: var(--md-purple-600);
+ --jp-icon-contrast-color1: var(--md-green-600);
+ --jp-icon-contrast-color2: var(--md-pink-600);
+ --jp-icon-contrast-color3: var(--md-blue-600);
+
+ /* Button colors */
+ --jp-accept-color-normal: var(--md-blue-700);
+ --jp-accept-color-hover: var(--md-blue-800);
+ --jp-accept-color-active: var(--md-blue-900);
+ --jp-warn-color-normal: var(--md-red-700);
+ --jp-warn-color-hover: var(--md-red-800);
+ --jp-warn-color-active: var(--md-red-900);
+ --jp-reject-color-normal: var(--md-grey-600);
+ --jp-reject-color-hover: var(--md-grey-700);
+ --jp-reject-color-active: var(--md-grey-800);
+
+ /* File or activity icons and switch semantic variables */
+ --jp-jupyter-icon-color: #f37626;
+ --jp-notebook-icon-color: #f37626;
+ --jp-json-icon-color: var(--md-orange-700);
+ --jp-console-icon-background-color: var(--md-blue-700);
+ --jp-console-icon-color: white;
+ --jp-terminal-icon-background-color: var(--md-grey-800);
+ --jp-terminal-icon-color: var(--md-grey-200);
+ --jp-text-editor-icon-color: var(--md-grey-700);
+ --jp-inspector-icon-color: var(--md-grey-700);
+ --jp-switch-color: var(--md-grey-400);
+ --jp-switch-true-position-color: var(--md-orange-900);
+}
+</style>
+<style type="text/css">
+/* Force rendering true colors when outputing to pdf */
+* {
+ -webkit-print-color-adjust: exact;
+}
+
+/* Misc */
+a.anchor-link {
+ display: none;
+}
+
+/* Input area styling */
+.jp-InputArea {
+ overflow: hidden;
+}
+
+.jp-InputArea-editor {
+ overflow: hidden;
+}
+
+.cm-editor.cm-s-jupyter .highlight pre {
+/* weird, but --jp-code-padding defined to be 5px but 4px horizontal padding is hardcoded for pre.cm-line */
+ padding: var(--jp-code-padding) 4px;
+ margin: 0;
+
+ font-family: inherit;
+ font-size: inherit;
+ line-height: inherit;
+ color: inherit;
+
+}
+
+.jp-OutputArea-output pre {
+ line-height: inherit;
+ font-family: inherit;
+}
+
+.jp-RenderedText pre {
+ color: var(--jp-content-font-color1);
+ font-size: var(--jp-code-font-size);
+}
+
+/* Hiding the collapser by default */
+.jp-Collapser {
+ display: none;
+}
+
+@page {
+ margin: 0.5in; /* Margin for each printed piece of paper */
+}
+
+@media print {
+ .jp-Cell-inputWrapper,
+ .jp-Cell-outputWrapper {
+ display: block;
+ }
+}
+</style>
+<!-- Load mathjax -->
+<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-AMS_CHTML-full,Safe"> </script>
+<!-- MathJax configuration -->
+<script type="text/x-mathjax-config">
+ init_mathjax = function() {
+ if (window.MathJax) {
+ // MathJax loaded
+ MathJax.Hub.Config({
+ TeX: {
+ equationNumbers: {
+ autoNumber: "AMS",
+ useLabelIds: true
+ }
+ },
+ tex2jax: {
+ inlineMath: [ ['$','$'], ["\\(","\\)"] ],
+ displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
+ processEscapes: true,
+ processEnvironments: true
+ },
+ displayAlign: 'center',
+ messageStyle: 'none',
+ CommonHTML: {
+ linebreaks: {
+ automatic: true
+ }
+ }
+ });
+
+ MathJax.Hub.Queue(["Typeset", MathJax.Hub]);
+ }
+ }
+ init_mathjax();
+ </script>
+<!-- End of mathjax configuration --><script type="module">
+ document.addEventListener("DOMContentLoaded", async () => {
+ const diagrams = document.querySelectorAll(".jp-Mermaid > pre.mermaid");
+ // do not load mermaidjs if not needed
+ if (!diagrams.length) {
+ return;
+ }
+ const mermaid = (await import("https://cdnjs.cloudflare.com/ajax/libs/mermaid/10.7.0/mermaid.esm.min.mjs")).default;
+ const parser = new DOMParser();
+
+ mermaid.initialize({
+ maxTextSize: 100000,
+ maxEdges: 100000,
+ startOnLoad: false,
+ fontFamily: window
+ .getComputedStyle(document.body)
+ .getPropertyValue("--jp-ui-font-family"),
+ theme: document.querySelector("body[data-jp-theme-light='true']")
+ ? "default"
+ : "dark",
+ });
+
+ let _nextMermaidId = 0;
+
+ function makeMermaidImage(svg) {
+ const img = document.createElement("img");
+ const doc = parser.parseFromString(svg, "image/svg+xml");
+ const svgEl = doc.querySelector("svg");
+ const { maxWidth } = svgEl?.style || {};
+ const firstTitle = doc.querySelector("title");
+ const firstDesc = doc.querySelector("desc");
+
+ img.setAttribute("src", `data:image/svg+xml,${encodeURIComponent(svg)}`);
+ if (maxWidth) {
+ img.width = parseInt(maxWidth);
+ }
+ if (firstTitle) {
+ img.setAttribute("alt", firstTitle.textContent);
+ }
+ if (firstDesc) {
+ const caption = document.createElement("figcaption");
+ caption.className = "sr-only";
+ caption.textContent = firstDesc.textContent;
+ return [img, caption];
+ }
+ return [img];
+ }
+
+ async function makeMermaidError(text) {
+ let errorMessage = "";
+ try {
+ await mermaid.parse(text);
+ } catch (err) {
+ errorMessage = `${err}`;
+ }
+
+ const result = document.createElement("details");
+ result.className = 'jp-RenderedMermaid-Details';
+ const summary = document.createElement("summary");
+ summary.className = 'jp-RenderedMermaid-Summary';
+ const pre = document.createElement("pre");
+ const code = document.createElement("code");
+ code.innerText = text;
+ pre.appendChild(code);
+ summary.appendChild(pre);
+ result.appendChild(summary);
+
+ const warning = document.createElement("pre");
+ warning.innerText = errorMessage;
+ result.appendChild(warning);
+ return [result];
+ }
+
+ async function renderOneMarmaid(src) {
+ const id = `jp-mermaid-${_nextMermaidId++}`;
+ const parent = src.parentNode;
+ let raw = src.textContent.trim();
+ const el = document.createElement("div");
+ el.style.visibility = "hidden";
+ document.body.appendChild(el);
+ let results = null;
+ let output = null;
+ try {
+ let { svg } = await mermaid.render(id, raw, el);
+ svg = cleanMermaidSvg(svg);
+ results = makeMermaidImage(svg);
+ output = document.createElement("figure");
+ results.map(output.appendChild, output);
+ } catch (err) {
+ parent.classList.add("jp-mod-warning");
+ results = await makeMermaidError(raw);
+ output = results[0];
+ } finally {
+ el.remove();
+ }
+ parent.classList.add("jp-RenderedMermaid");
+ parent.appendChild(output);
+ }
+
+
+ /**
+ * Post-process to ensure mermaid diagrams contain only valid SVG and XHTML.
+ */
+ function cleanMermaidSvg(svg) {
+ return svg.replace(RE_VOID_ELEMENT, replaceVoidElement);
+ }
+
+
+ /**
+ * A regular expression for all void elements, which may include attributes and
+ * a slash.
+ *
+ * @see https://developer.mozilla.org/en-US/docs/Glossary/Void_element
+ *
+ * Of these, only `<br>` is generated by Mermaid in place of `\n`,
+ * but _any_ "malformed" tag will break the SVG rendering entirely.
+ */
+ const RE_VOID_ELEMENT =
+ /<\s*(area|base|br|col|embed|hr|img|input|link|meta|param|source|track|wbr)\s*([^>]*?)\s*>/gi;
+
+ /**
+ * Ensure a void element is closed with a slash, preserving any attributes.
+ */
+ function replaceVoidElement(match, tag, rest) {
+ rest = rest.trim();
+ if (!rest.endsWith('/')) {
+ rest = `${rest} /`;
+ }
+ return `<${tag} ${rest}>`;
+ }
+
+ void Promise.all([...diagrams].map(renderOneMarmaid));
+ });
+</script>
+<style>
+ .jp-Mermaid:not(.jp-RenderedMermaid) {
+ display: none;
+ }
+
+ .jp-RenderedMermaid {
+ overflow: auto;
+ display: flex;
+ }
+
+ .jp-RenderedMermaid.jp-mod-warning {
+ width: auto;
+ padding: 0.5em;
+ margin-top: 0.5em;
+ border: var(--jp-border-width) solid var(--jp-warn-color2);
+ border-radius: var(--jp-border-radius);
+ color: var(--jp-ui-font-color1);
+ font-size: var(--jp-ui-font-size1);
+ white-space: pre-wrap;
+ word-wrap: break-word;
+ }
+
+ .jp-RenderedMermaid figure {
+ margin: 0;
+ overflow: auto;
+ max-width: 100%;
+ }
+
+ .jp-RenderedMermaid img {
+ max-width: 100%;
+ }
+
+ .jp-RenderedMermaid-Details > pre {
+ margin-top: 1em;
+ }
+
+ .jp-RenderedMermaid-Summary {
+ color: var(--jp-warn-color2);
+ }
+
+ .jp-RenderedMermaid:not(.jp-mod-warning) pre {
+ display: none;
+ }
+
+ .jp-RenderedMermaid-Summary > pre {
+ display: inline-block;
+ white-space: normal;
+ }
+</style>
+<!-- End of mermaid configuration --></head>
+<body class="jp-Notebook" data-jp-theme-light="true" data-jp-theme-name="JupyterLab Light">
+<main>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=25c16740">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h1 id="Unsupervised-Learning-Final-Project:-Iris-Species-Clustering-Analysis">Unsupervised Learning Final Project: Iris Species Clustering Analysis<a class="anchor-link" href="#Unsupervised-Learning-Final-Project:-Iris-Species-Clustering-Analysis">¶</a></h1><h2 id="Comparative-Study-of-K-Means-vs-Agglomerative-Hierarchical-Clustering">Comparative Study of K-Means vs Agglomerative Hierarchical Clustering<a class="anchor-link" href="#Comparative-Study-of-K-Means-vs-Agglomerative-Hierarchical-Clustering">¶</a></h2><p>A copy of this notebook can be found on <a href="git@github.com:Farzat07/Unsupervised-Learning-Final-Project-Iris-Species-Clustering-Analysis.git">GitHub</a></p>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=08f46d2d">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h2 id="Problem-Description">Problem Description<a class="anchor-link" href="#Problem-Description">¶</a></h2><h3 id="Background">Background<a class="anchor-link" href="#Background">¶</a></h3><p>The Iris flower dataset is a classic multivariate dataset introduced by Sir Ronald Fisher in 1936. It consists of 150 samples from three species of Iris flowers (Iris setosa, Iris versicolor, and Iris virginica) with four features measured from each sample: sepal length, sepal width, petal length, and petal width.</p>
+<p>This is perhaps the best known database to be found in the pattern recognition literature. Fisher's paper is a classic in the field and is referenced frequently to this day. While one class is linearly separable from the other 2, the latter are NOT linearly separable from each other, making the problem interesting.</p>
+<h3 id="Objectives">Objectives<a class="anchor-link" href="#Objectives">¶</a></h3><p>This project aims to:</p>
+<ul>
+<li>Apply and compare two fundamental clustering algorithms: K-Means and Agglomerative Hierarchical Clustering</li>
+<li>Evaluate clustering performance using both internal (silhouette score) and external (accuracy, ARI) metrics</li>
+<li>Determine optimal number of clusters using multiple validation techniques</li>
+<li>Compare different linkage methods and metric parameters for Agglomerative Clustering</li>
+</ul>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=0653efb8">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Import-Necessary-Libraries">Import Necessary Libraries<a class="anchor-link" href="#Import-Necessary-Libraries">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=6500b472">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [1]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="kn">from</span><span class="w"> </span><span class="nn">itertools</span><span class="w"> </span><span class="kn">import</span> <span class="n">permutations</span>
+<span class="kn">import</span><span class="w"> </span><span class="nn">numpy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">np</span>
+<span class="kn">import</span><span class="w"> </span><span class="nn">pandas</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pd</span>
+<span class="kn">import</span><span class="w"> </span><span class="nn">matplotlib.pyplot</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">plt</span>
+<span class="kn">import</span><span class="w"> </span><span class="nn">seaborn</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">sns</span>
+<span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.datasets</span><span class="w"> </span><span class="kn">import</span> <span class="n">load_iris</span>
+<span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.cluster</span><span class="w"> </span><span class="kn">import</span> <span class="n">KMeans</span><span class="p">,</span> <span class="n">AgglomerativeClustering</span>
+<span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.preprocessing</span><span class="w"> </span><span class="kn">import</span> <span class="n">StandardScaler</span>
+<span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.decomposition</span><span class="w"> </span><span class="kn">import</span> <span class="n">PCA</span>
+<span class="kn">from</span><span class="w"> </span><span class="nn">sklearn.metrics</span><span class="w"> </span><span class="kn">import</span> <span class="n">silhouette_score</span><span class="p">,</span> <span class="n">adjusted_rand_score</span><span class="p">,</span> <span class="n">accuracy_score</span><span class="p">,</span> <span class="n">confusion_matrix</span>
+<span class="kn">import</span><span class="w"> </span><span class="nn">scipy.cluster.hierarchy</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">sch</span>
+<span class="kn">from</span><span class="w"> </span><span class="nn">scipy</span><span class="w"> </span><span class="kn">import</span> <span class="n">stats</span>
+
+<span class="o">%</span><span class="k">matplotlib</span> inline
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3b028dd1">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Load-and-Explore-the-Dataset">Load and Explore the Dataset<a class="anchor-link" href="#Load-and-Explore-the-Dataset">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=9fcf1e5d">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [2]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Load the Iris dataset</span>
+<span class="n">iris</span> <span class="o">=</span> <span class="n">load_iris</span><span class="p">()</span>
+<span class="n">X</span> <span class="o">=</span> <span class="n">iris</span><span class="o">.</span><span class="n">data</span>
+<span class="n">target</span> <span class="o">=</span> <span class="n">iris</span><span class="o">.</span><span class="n">target</span>
+<span class="n">species_names</span> <span class="o">=</span> <span class="n">iris</span><span class="o">.</span><span class="n">target_names</span>
+
+<span class="c1"># Create a DataFrame for better visualization</span>
+<span class="n">df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">X</span><span class="p">,</span> <span class="n">columns</span><span class="o">=</span><span class="n">iris</span><span class="o">.</span><span class="n">feature_names</span><span class="p">)</span>
+<span class="n">df</span><span class="p">[</span><span class="s1">'species'</span><span class="p">]</span> <span class="o">=</span> <span class="n">species_names</span><span class="p">[</span><span class="n">target</span><span class="p">]</span>
+<span class="n">df</span><span class="p">[</span><span class="s1">'true_labels'</span><span class="p">]</span> <span class="o">=</span> <span class="n">target</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Dataset Overview:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Features:"</span><span class="p">,</span> <span class="n">iris</span><span class="o">.</span><span class="n">feature_names</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Species:"</span><span class="p">,</span> <span class="n">species_names</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="se">\n</span><span class="s2">Dataframe structure:"</span><span class="p">)</span>
+<span class="n">df</span><span class="o">.</span><span class="n">info</span><span class="p">()</span>
+<span class="n">df</span><span class="o">.</span><span class="n">species</span><span class="o">.</span><span class="n">value_counts</span><span class="p">()</span><span class="o">.</span><span class="n">plot</span><span class="o">.</span><span class="n">pie</span><span class="p">(</span><span class="n">autopct</span><span class="o">=</span><span class="s1">'</span><span class="si">%.1f%%</span><span class="s1">'</span><span class="p">,</span> <span class="n">ylabel</span><span class="o">=</span><span class="s1">''</span><span class="p">)</span>
+<span class="n">df</span><span class="o">.</span><span class="n">head</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>Dataset Overview:
+Features: ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
+Species: ['setosa', 'versicolor', 'virginica']
+
+Dataframe structure:
+&lt;class 'pandas.core.frame.DataFrame'&gt;
+RangeIndex: 150 entries, 0 to 149
+Data columns (total 6 columns):
+ # Column Non-Null Count Dtype
+--- ------ -------------- -----
+ 0 sepal length (cm) 150 non-null float64
+ 1 sepal width (cm) 150 non-null float64
+ 2 petal length (cm) 150 non-null float64
+ 3 petal width (cm) 150 non-null float64
+ 4 species 150 non-null object
+ 5 true_labels 150 non-null int64
+dtypes: float64(4), int64(1), object(1)
+memory usage: 7.2+ KB
+</pre>
+</div>
+</div>
+<div class="jp-OutputArea-child jp-OutputArea-executeResult">
+<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[2]:</div>
+<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html" tabindex="0">
+<div>
+<style scoped="">
+ .dataframe tbody tr th:only-of-type {
+ vertical-align: middle;
+ }
+
+ .dataframe tbody tr th {
+ vertical-align: top;
+ }
+
+ .dataframe thead th {
+ text-align: right;
+ }
+</style>
+<table border="1" class="dataframe">
+<thead>
+<tr style="text-align: right;">
+<th></th>
+<th>sepal length (cm)</th>
+<th>sepal width (cm)</th>
+<th>petal length (cm)</th>
+<th>petal width (cm)</th>
+<th>species</th>
+<th>true_labels</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<th>0</th>
+<td>5.1</td>
+<td>3.5</td>
+<td>1.4</td>
+<td>0.2</td>
+<td>setosa</td>
+<td>0</td>
+</tr>
+<tr>
+<th>1</th>
+<td>4.9</td>
+<td>3.0</td>
+<td>1.4</td>
+<td>0.2</td>
+<td>setosa</td>
+<td>0</td>
+</tr>
+<tr>
+<th>2</th>
+<td>4.7</td>
+<td>3.2</td>
+<td>1.3</td>
+<td>0.2</td>
+<td>setosa</td>
+<td>0</td>
+</tr>
+<tr>
+<th>3</th>
+<td>4.6</td>
+<td>3.1</td>
+<td>1.5</td>
+<td>0.2</td>
+<td>setosa</td>
+<td>0</td>
+</tr>
+<tr>
+<th>4</th>
+<td>5.0</td>
+<td>3.6</td>
+<td>1.4</td>
+<td>0.2</td>
+<td>setosa</td>
+<td>0</td>
+</tr>
+</tbody>
+</table>
+</div>
+</div>
+</div>
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4602986e">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="EDA-(Exploratory-Data-Analysis)">EDA (Exploratory Data Analysis)<a class="anchor-link" href="#EDA-(Exploratory-Data-Analysis)">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=24f44dd6">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [3]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Basic statistics</span>
+<span class="n">df</span><span class="p">[</span><span class="n">iris</span><span class="o">.</span><span class="n">feature_names</span><span class="p">]</span><span class="o">.</span><span class="n">describe</span><span class="p">()</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child jp-OutputArea-executeResult">
+<div class="jp-OutputPrompt jp-OutputArea-prompt">Out[3]:</div>
+<div class="jp-RenderedHTMLCommon jp-RenderedHTML jp-OutputArea-output jp-OutputArea-executeResult" data-mime-type="text/html" tabindex="0">
+<div>
+<style scoped="">
+ .dataframe tbody tr th:only-of-type {
+ vertical-align: middle;
+ }
+
+ .dataframe tbody tr th {
+ vertical-align: top;
+ }
+
+ .dataframe thead th {
+ text-align: right;
+ }
+</style>
+<table border="1" class="dataframe">
+<thead>
+<tr style="text-align: right;">
+<th></th>
+<th>sepal length (cm)</th>
+<th>sepal width (cm)</th>
+<th>petal length (cm)</th>
+<th>petal width (cm)</th>
+</tr>
+</thead>
+<tbody>
+<tr>
+<th>count</th>
+<td>150.00</td>
+<td>150.00</td>
+<td>150.00</td>
+<td>150.00</td>
+</tr>
+<tr>
+<th>mean</th>
+<td>5.84</td>
+<td>3.06</td>
+<td>3.76</td>
+<td>1.20</td>
+</tr>
+<tr>
+<th>std</th>
+<td>0.83</td>
+<td>0.44</td>
+<td>1.77</td>
+<td>0.76</td>
+</tr>
+<tr>
+<th>min</th>
+<td>4.30</td>
+<td>2.00</td>
+<td>1.00</td>
+<td>0.10</td>
+</tr>
+<tr>
+<th>25%</th>
+<td>5.10</td>
+<td>2.80</td>
+<td>1.60</td>
+<td>0.30</td>
+</tr>
+<tr>
+<th>50%</th>
+<td>5.80</td>
+<td>3.00</td>
+<td>4.35</td>
+<td>1.30</td>
+</tr>
+<tr>
+<th>75%</th>
+<td>6.40</td>
+<td>3.30</td>
+<td>5.10</td>
+<td>1.80</td>
+</tr>
+<tr>
+<th>max</th>
+<td>7.90</td>
+<td>4.40</td>
+<td>6.90</td>
+<td>2.50</td>
+</tr>
+</tbody>
+</table>
+</div>
+</div>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=ff94232b">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [4]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Check for missing values</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"MISSING VALUES:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"="</span> <span class="o">*</span> <span class="mi">30</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="n">df</span><span class="o">.</span><span class="n">isnull</span><span class="p">()</span><span class="o">.</span><span class="n">sum</span><span class="p">())</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>MISSING VALUES:
+==============================
+sepal length (cm) 0
+sepal width (cm) 0
+petal length (cm) 0
+petal width (cm) 0
+species 0
+true_labels 0
+dtype: int64
+</pre>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=3998453c">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Statistical-Analysis-by-Species">Statistical Analysis by Species<a class="anchor-link" href="#Statistical-Analysis-by-Species">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=4af6c182">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [5]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Statistics by species</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"STATISTICS BY SPECIES:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"="</span> <span class="o">*</span> <span class="mi">50</span><span class="p">)</span>
+<span class="n">species_stats</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">groupby</span><span class="p">(</span><span class="s1">'species'</span><span class="p">)[</span><span class="n">iris</span><span class="o">.</span><span class="n">feature_names</span><span class="p">]</span><span class="o">.</span><span class="n">agg</span><span class="p">([</span><span class="s1">'mean'</span><span class="p">,</span> <span class="s1">'std'</span><span class="p">,</span> <span class="s1">'min'</span><span class="p">,</span> <span class="s1">'max'</span><span class="p">])</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="n">species_stats</span><span class="p">)</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>STATISTICS BY SPECIES:
+==================================================
+ sepal length (cm) sepal width (cm) \
+ mean std min max mean std min max
+species
+setosa 5.01 0.35 4.3 5.8 3.43 0.38 2.3 4.4
+versicolor 5.94 0.52 4.9 7.0 2.77 0.31 2.0 3.4
+virginica 6.59 0.64 4.9 7.9 2.97 0.32 2.2 3.8
+
+ petal length (cm) petal width (cm)
+ mean std min max mean std min max
+species
+setosa 1.46 0.17 1.0 1.9 0.25 0.11 0.1 0.6
+versicolor 4.26 0.47 3.0 5.1 1.33 0.20 1.0 1.8
+virginica 5.55 0.55 4.5 6.9 2.03 0.27 1.4 2.5
+</pre>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=24e38cd1">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Visual-EDA">Visual EDA<a class="anchor-link" href="#Visual-EDA">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=8d60fe92">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [6]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Pairplot to see relationships between features</span>
+<span class="n">sns</span><span class="o">.</span><span class="n">pairplot</span><span class="p">(</span><span class="n">df</span><span class="p">,</span> <span class="n">hue</span><span class="o">=</span><span class="s1">'species'</span><span class="p">,</span> <span class="n">diag_kind</span><span class="o">=</span><span class="s1">'hist'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">suptitle</span><span class="p">(</span><span class="s1">'Pairplot of Iris Features by Species'</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="mf">1.02</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=62129f7c">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [7]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Correlation matrix</span>
+<span class="n">correlation_matrix</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">iris</span><span class="o">.</span><span class="n">feature_names</span><span class="p">]</span><span class="o">.</span><span class="n">corr</span><span class="p">()</span>
+<span class="n">sns</span><span class="o">.</span><span class="n">heatmap</span><span class="p">(</span><span class="n">correlation_matrix</span><span class="p">,</span> <span class="n">annot</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'coolwarm'</span><span class="p">,</span> <span class="n">center</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">'.2f'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Correlation Matrix of Iris Features'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=49bd7eb6-c2fb-4e09-98d8-43d25ffb04a8">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Observation">Observation<a class="anchor-link" href="#Observation">¶</a></h3><p>It seems that petal length and with are very highly correlated, meaning that they could be treated as one dimention.</p>
+<p>Sepal width seems to be much less correlated with the petal dimention. It is likely that after the petal dimention, sepal width would be the second decisive factor in the classification.</p>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=7e7de513">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [8]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Boxplots for each feature by species</span>
+<span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
+<span class="n">axes</span> <span class="o">=</span> <span class="n">axes</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
+
+<span class="k">for</span> <span class="n">ax</span><span class="p">,</span> <span class="n">feature</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">axes</span><span class="p">,</span> <span class="n">iris</span><span class="o">.</span><span class="n">feature_names</span><span class="p">):</span>
+ <span class="n">sns</span><span class="o">.</span><span class="n">boxplot</span><span class="p">(</span><span class="n">x</span><span class="o">=</span><span class="s1">'species'</span><span class="p">,</span> <span class="n">y</span><span class="o">=</span><span class="n">feature</span><span class="p">,</span> <span class="n">data</span><span class="o">=</span><span class="n">df</span><span class="p">,</span> <span class="n">ax</span><span class="o">=</span><span class="n">ax</span><span class="p">)</span>
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="n">feature</span><span class="p">)</span>
+ <span class="n">ax</span><span class="o">.</span><span class="n">tick_params</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="s1">'x'</span><span class="p">,</span> <span class="n">rotation</span><span class="o">=</span><span class="mi">45</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=62bf6bb1">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [9]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Distribution plots for each feature</span>
+<span class="n">fig</span><span class="p">,</span> <span class="n">axes</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">subplots</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">15</span><span class="p">,</span> <span class="mi">10</span><span class="p">))</span>
+<span class="n">axes</span> <span class="o">=</span> <span class="n">axes</span><span class="o">.</span><span class="n">ravel</span><span class="p">()</span>
+
+<span class="k">for</span> <span class="n">ax</span><span class="p">,</span> <span class="n">feature</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">axes</span><span class="p">,</span> <span class="n">iris</span><span class="o">.</span><span class="n">feature_names</span><span class="p">):</span>
+ <span class="k">for</span> <span class="n">species</span> <span class="ow">in</span> <span class="n">species_names</span><span class="p">:</span>
+ <span class="n">species_data</span> <span class="o">=</span> <span class="n">df</span><span class="p">[</span><span class="n">df</span><span class="p">[</span><span class="s1">'species'</span><span class="p">]</span> <span class="o">==</span> <span class="n">species</span><span class="p">][</span><span class="n">feature</span><span class="p">]</span>
+ <span class="n">ax</span><span class="o">.</span><span class="n">hist</span><span class="p">(</span><span class="n">species_data</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.6</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">species</span><span class="p">,</span> <span class="n">bins</span><span class="o">=</span><span class="mi">15</span><span class="p">,</span> <span class="n">density</span><span class="o">=</span><span class="kc">True</span><span class="p">)</span>
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_title</span><span class="p">(</span><span class="s2">"Distribution of </span><span class="si">%s</span><span class="s2">"</span> <span class="o">%</span> <span class="n">feature</span><span class="p">)</span>
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_xlabel</span><span class="p">(</span><span class="n">feature</span><span class="p">)</span>
+ <span class="n">ax</span><span class="o">.</span><span class="n">set_ylabel</span><span class="p">(</span><span class="s2">"Density"</span><span class="p">)</span>
+ <span class="n">ax</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4a3f6e48">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Data-Preprocessing">Data Preprocessing<a class="anchor-link" href="#Data-Preprocessing">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=2de6b0c3">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [10]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Scale the numerical features</span>
+<span class="c1"># This is necessary as the above EDA confirms that the features are well varied in their means and standard deviations</span>
+<span class="c1"># Scaling the data should make the models less biased</span>
+<span class="n">scaler</span> <span class="o">=</span> <span class="n">StandardScaler</span><span class="p">()</span>
+<span class="n">X_scaled</span> <span class="o">=</span> <span class="n">scaler</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">X</span><span class="p">)</span>
+<span class="c1"># There is no need to perform other transformations, such as log transformation, as the data seems to almost follow a normal distribution</span>
+<span class="c1"># The number of outliers is also negligible</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=21df2f07">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="PCA-for-Dimensionality-Reduction-and-Visualization">PCA for Dimensionality Reduction and Visualization<a class="anchor-link" href="#PCA-for-Dimensionality-Reduction-and-Visualization">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=7280b101">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [11]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Perform PCA for visualization</span>
+<span class="n">pca</span> <span class="o">=</span> <span class="n">PCA</span><span class="p">(</span><span class="n">n_components</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
+<span class="n">X_pca</span> <span class="o">=</span> <span class="n">pca</span><span class="o">.</span><span class="n">fit_transform</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">)</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">"PCA RESULTS:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"="</span> <span class="o">*</span> <span class="mi">50</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Explained variance ratio:"</span><span class="p">,</span> <span class="n">pca</span><span class="o">.</span><span class="n">explained_variance_ratio_</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Total explained variance: </span><span class="si">%.3f</span><span class="s2">"</span> <span class="o">%</span> <span class="nb">sum</span><span class="p">(</span><span class="n">pca</span><span class="o">.</span><span class="n">explained_variance_ratio_</span><span class="p">))</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>PCA RESULTS:
+==================================================
+Explained variance ratio: [0.72962445 0.22850762]
+Total explained variance: 0.958
+</pre>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2a8605cc-6a7e-4612-a94e-fe4303b4243b">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Observation">Observation<a class="anchor-link" href="#Observation">¶</a></h3><p>Note that only two dimentions were enough to describe 95.8% of the variance, suggesting that the observations made about the correlation above were correct.</p>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=81002915">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [12]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Visualize PCA results</span>
+<span class="n">scatter</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">target</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'viridis'</span><span class="p">,</span> <span class="n">alpha</span><span class="o">=</span><span class="mf">0.7</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'First Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Second Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'PCA: Actual Species'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles</span><span class="o">=</span><span class="n">scatter</span><span class="o">.</span><span class="n">legend_elements</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">labels</span><span class="o">=</span><span class="n">species_names</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=2e79a17f-f12a-4f0c-b77d-b35a03766fb1">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Observation">Observation<a class="anchor-link" href="#Observation">¶</a></h3><p>Based on this visualisation, it is expected that the model will classify setosa with almost 100% accuracy, while struggling with the versicolor/virginica pair.</p>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ae05d031">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Determine-Optimal-Number-of-Clusters">Determine Optimal Number of Clusters<a class="anchor-link" href="#Determine-Optimal-Number-of-Clusters">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=489eaee6">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [13]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Function to find best label permutation for accuracy</span>
+<span class="k">def</span><span class="w"> </span><span class="nf">label_permute_compare</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_pred</span><span class="p">):</span>
+<span class="w"> </span><span class="sd">"""</span>
+<span class="sd"> y_true: true labels</span>
+<span class="sd"> y_pred: predicted cluster labels</span>
+<span class="sd"> Returns:</span>
+<span class="sd"> - best_perm: best permutation of labels found</span>
+<span class="sd"> - best_acc: best accuracy achieved</span>
+<span class="sd"> - best_y_pred_mapped: predicted labels mapped using best permutation</span>
+<span class="sd"> """</span>
+ <span class="n">unique_labels</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">unique</span><span class="p">(</span><span class="n">y_pred</span><span class="p">)</span>
+ <span class="n">best_acc</span> <span class="o">=</span> <span class="mf">0.</span>
+
+ <span class="c1"># Generate all possible permutations of the unique labels</span>
+ <span class="k">for</span> <span class="n">perm</span> <span class="ow">in</span> <span class="n">permutations</span><span class="p">(</span><span class="n">unique_labels</span><span class="p">):</span>
+ <span class="c1"># Create mapping from original cluster labels to permuted labels</span>
+ <span class="n">y_pred_mapped</span> <span class="o">=</span> <span class="p">[</span><span class="n">perm</span><span class="p">[</span><span class="n">label</span><span class="p">]</span> <span class="k">for</span> <span class="n">label</span> <span class="ow">in</span> <span class="n">y_pred</span><span class="p">]</span>
+
+ <span class="n">accuracy</span> <span class="o">=</span> <span class="n">accuracy_score</span><span class="p">(</span><span class="n">y_true</span><span class="p">,</span> <span class="n">y_pred_mapped</span><span class="p">)</span>
+ <span class="k">if</span> <span class="n">accuracy</span> <span class="o">&gt;</span> <span class="n">best_acc</span><span class="p">:</span>
+ <span class="n">best_acc</span> <span class="o">=</span> <span class="n">accuracy</span>
+ <span class="n">best_perm</span> <span class="o">=</span> <span class="n">perm</span>
+ <span class="n">best_y_pred_mapped</span> <span class="o">=</span> <span class="n">y_pred_mapped</span>
+
+ <span class="k">return</span> <span class="n">best_perm</span><span class="p">,</span> <span class="n">best_acc</span><span class="p">,</span> <span class="n">best_y_pred_mapped</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell jp-mod-noOutputs" id="cell-id=f9b3624e">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [14]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Determine optimal number of clusters using multiple metrics</span>
+<span class="n">inertia</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="n">silhouette_scores_kmeans</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="n">silhouette_scores_agg</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="n">accuracy_scores_kmeans</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="n">accuracy_scores_agg</span> <span class="o">=</span> <span class="p">[]</span>
+<span class="n">k_range</span> <span class="o">=</span> <span class="nb">range</span><span class="p">(</span><span class="mi">2</span><span class="p">,</span> <span class="mi">8</span><span class="p">)</span>
+
+<span class="k">for</span> <span class="n">k</span> <span class="ow">in</span> <span class="n">k_range</span><span class="p">:</span>
+ <span class="c1"># K-Means</span>
+ <span class="n">kmeans</span> <span class="o">=</span> <span class="n">KMeans</span><span class="p">(</span><span class="n">n_clusters</span><span class="o">=</span><span class="n">k</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span><span class="p">,</span> <span class="n">n_init</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
+ <span class="n">kmeans_labels</span> <span class="o">=</span> <span class="n">kmeans</span><span class="o">.</span><span class="n">fit_predict</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">)</span>
+ <span class="n">inertia</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">kmeans</span><span class="o">.</span><span class="n">inertia_</span><span class="p">)</span>
+ <span class="n">silhouette_scores_kmeans</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">silhouette_score</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">kmeans_labels</span><span class="p">))</span>
+ <span class="n">accuracy_scores_kmeans</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">label_permute_compare</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">kmeans_labels</span><span class="p">)[</span><span class="mi">1</span><span class="p">])</span>
+
+ <span class="c1"># Agglomerative Clustering (default parameters)</span>
+ <span class="n">agg</span> <span class="o">=</span> <span class="n">AgglomerativeClustering</span><span class="p">(</span><span class="n">n_clusters</span><span class="o">=</span><span class="n">k</span><span class="p">)</span>
+ <span class="n">agg_labels</span> <span class="o">=</span> <span class="n">agg</span><span class="o">.</span><span class="n">fit_predict</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">)</span>
+ <span class="n">silhouette_scores_agg</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">silhouette_score</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">agg_labels</span><span class="p">))</span>
+ <span class="n">accuracy_scores_agg</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">label_permute_compare</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_labels</span><span class="p">)[</span><span class="mi">1</span><span class="p">])</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=84bc8262">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [15]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Plot comparison of methods</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">18</span><span class="p">,</span> <span class="mi">5</span><span class="p">))</span>
+
+<span class="c1"># Elbow Method</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">k_range</span><span class="p">,</span> <span class="n">inertia</span><span class="p">,</span> <span class="s1">'bo-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'K-Means'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Number of clusters'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Inertia'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Elbow Method (K-Means Only)'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+
+<span class="c1"># Silhouette Scores Comparison</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">k_range</span><span class="p">,</span> <span class="n">silhouette_scores_kmeans</span><span class="p">,</span> <span class="s1">'ro-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'K-Means'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">k_range</span><span class="p">,</span> <span class="n">silhouette_scores_agg</span><span class="p">,</span> <span class="s1">'go-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Agglomerative'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Number of clusters'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Silhouette Score'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Silhouette Scores Comparison'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+
+<span class="c1"># Accuracy Scores Comparison</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">k_range</span><span class="p">,</span> <span class="n">accuracy_scores_kmeans</span><span class="p">,</span> <span class="s1">'ro-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'K-Means'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">k_range</span><span class="p">,</span> <span class="n">accuracy_scores_agg</span><span class="p">,</span> <span class="s1">'go-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Agglomerative'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Number of clusters'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Accuracy Score'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Accuracy Scores Comparison'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+
+<span class="c1"># Dendrogram for Agglomerative Clustering</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
+<span class="n">dendrogram</span> <span class="o">=</span> <span class="n">sch</span><span class="o">.</span><span class="n">dendrogram</span><span class="p">(</span><span class="n">sch</span><span class="o">.</span><span class="n">linkage</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'ward'</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Dendrogram for Agglomerative Clustering</span><span class="se">\n</span><span class="s1">(ward linkage)'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Samples'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Euclidean Distance'</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=65953621">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Compare-Different-Linkage-Methods-and-Metric-Parameters">Compare Different Linkage Methods and Metric Parameters<a class="anchor-link" href="#Compare-Different-Linkage-Methods-and-Metric-Parameters">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=8f52240f">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [16]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Define different linkage methods to test</span>
+<span class="n">linkage_methods</span> <span class="o">=</span> <span class="p">(</span><span class="s1">'ward'</span><span class="p">,</span> <span class="s1">'complete'</span><span class="p">,</span> <span class="s1">'average'</span><span class="p">,</span> <span class="s1">'single'</span><span class="p">)</span>
+
+<span class="c1"># Test different parameter combinations</span>
+<span class="n">agg_results</span> <span class="o">=</span> <span class="p">{</span>
+ <span class="s1">'linkage'</span><span class="p">:</span> <span class="p">[],</span>
+ <span class="s1">'metric'</span><span class="p">:</span> <span class="p">[],</span>
+ <span class="s1">'silhouette_score'</span><span class="p">:</span> <span class="p">[],</span>
+ <span class="s1">'accuracy'</span><span class="p">:</span> <span class="p">[],</span>
+ <span class="s1">'ari'</span><span class="p">:</span> <span class="p">[],</span>
+ <span class="s1">'labels'</span><span class="p">:</span> <span class="p">[],</span>
+ <span class="s1">'mapped_labels'</span><span class="p">:</span> <span class="p">[]</span>
+<span class="p">}</span>
+
+<span class="n">optimal_clusters</span> <span class="o">=</span> <span class="mi">3</span>
+
+<span class="k">for</span> <span class="n">linkage</span> <span class="ow">in</span> <span class="n">linkage_methods</span><span class="p">:</span>
+ <span class="k">for</span> <span class="n">metric</span> <span class="ow">in</span> <span class="p">(</span><span class="s1">'euclidean'</span><span class="p">,</span> <span class="s1">'manhattan'</span><span class="p">,</span> <span class="s1">'cosine'</span><span class="p">):</span>
+ <span class="c1"># Skip incompatible combinations</span>
+ <span class="k">if</span> <span class="n">linkage</span> <span class="o">==</span> <span class="s1">'ward'</span> <span class="ow">and</span> <span class="n">metric</span> <span class="o">!=</span> <span class="s1">'euclidean'</span><span class="p">:</span>
+ <span class="k">continue</span>
+
+ <span class="n">agg</span> <span class="o">=</span> <span class="n">AgglomerativeClustering</span><span class="p">(</span><span class="n">n_clusters</span><span class="o">=</span><span class="n">optimal_clusters</span><span class="p">,</span> <span class="n">linkage</span><span class="o">=</span><span class="n">linkage</span><span class="p">,</span> <span class="n">metric</span><span class="o">=</span><span class="n">metric</span><span class="p">)</span>
+ <span class="n">agg_labels</span> <span class="o">=</span> <span class="n">agg</span><span class="o">.</span><span class="n">fit_predict</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">)</span>
+
+ <span class="c1"># Calculate metrics</span>
+ <span class="n">silhouette</span> <span class="o">=</span> <span class="n">silhouette_score</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">agg_labels</span><span class="p">)</span>
+ <span class="n">_</span><span class="p">,</span> <span class="n">accuracy</span><span class="p">,</span> <span class="n">mapped_labels</span> <span class="o">=</span> <span class="n">label_permute_compare</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_labels</span><span class="p">)</span>
+ <span class="n">ari</span> <span class="o">=</span> <span class="n">adjusted_rand_score</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_labels</span><span class="p">)</span>
+
+ <span class="n">agg_results</span><span class="p">[</span><span class="s1">'linkage'</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">linkage</span><span class="p">)</span>
+ <span class="n">agg_results</span><span class="p">[</span><span class="s1">'metric'</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">metric</span><span class="p">)</span>
+ <span class="n">agg_results</span><span class="p">[</span><span class="s1">'silhouette_score'</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">silhouette</span><span class="p">)</span>
+ <span class="n">agg_results</span><span class="p">[</span><span class="s1">'accuracy'</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">accuracy</span><span class="p">)</span>
+ <span class="n">agg_results</span><span class="p">[</span><span class="s1">'ari'</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">ari</span><span class="p">)</span>
+ <span class="n">agg_results</span><span class="p">[</span><span class="s1">'labels'</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">agg_labels</span><span class="p">)</span>
+ <span class="n">agg_results</span><span class="p">[</span><span class="s1">'mapped_labels'</span><span class="p">]</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">mapped_labels</span><span class="p">)</span>
+
+<span class="c1"># Convert results to DataFrame, sorted by accuracy (descending)</span>
+<span class="n">agg_comparison_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">(</span><span class="n">agg_results</span><span class="p">)</span><span class="o">.</span><span class="n">sort_values</span><span class="p">(</span><span class="s1">'accuracy'</span><span class="p">,</span> <span class="n">ascending</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">"AGGLOMERATIVE CLUSTERING PARAMETER COMPARISON:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"="</span> <span class="o">*</span> <span class="mi">60</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="n">agg_comparison_df</span><span class="o">.</span><span class="n">iloc</span><span class="p">[:,:</span><span class="mi">5</span><span class="p">]</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">4</span><span class="p">))</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>AGGLOMERATIVE CLUSTERING PARAMETER COMPARISON:
+============================================================
+ linkage metric silhouette_score accuracy ari
+5 average manhattan 0.4530 0.8867 0.7184
+3 complete cosine 0.4466 0.8400 0.6335
+0 ward euclidean 0.4467 0.8267 0.6153
+2 complete manhattan 0.4350 0.8200 0.6146
+6 average cosine 0.4302 0.8200 0.6097
+1 complete euclidean 0.4496 0.7867 0.5726
+4 average euclidean 0.4803 0.6867 0.5621
+8 single manhattan 0.4949 0.6800 0.5638
+9 single cosine 0.0956 0.6667 0.5414
+7 single euclidean 0.5046 0.6600 0.5584
+</pre>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=a202fbfb">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Visualize-Performance-of-Different-Parameter-Combinations">Visualize Performance of Different Parameter Combinations<a class="anchor-link" href="#Visualize-Performance-of-Different-Parameter-Combinations">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=45a5a6ae">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [17]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Plot comparison of different parameter combinations</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">5</span><span class="p">))</span>
+
+<span class="c1"># Accuracy comparison</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">linkage</span> <span class="ow">in</span> <span class="n">linkage_methods</span><span class="p">:</span>
+ <span class="n">linkage_data</span> <span class="o">=</span> <span class="n">agg_comparison_df</span><span class="p">[</span><span class="n">agg_comparison_df</span><span class="p">[</span><span class="s1">'linkage'</span><span class="p">]</span> <span class="o">==</span> <span class="n">linkage</span><span class="p">]</span>
+ <span class="k">if</span> <span class="ow">not</span> <span class="n">linkage_data</span><span class="o">.</span><span class="n">empty</span><span class="p">:</span>
+ <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">linkage_data</span><span class="p">[</span><span class="s1">'metric'</span><span class="p">],</span> <span class="n">linkage_data</span><span class="p">[</span><span class="s1">'accuracy'</span><span class="p">],</span> <span class="s1">'o-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">linkage</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Metric'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Accuracy'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Accuracy by Linkage Method and Metric'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">rotation</span><span class="o">=</span><span class="mi">45</span><span class="p">)</span>
+
+<span class="c1"># Silhouette score comparison</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">linkage</span> <span class="ow">in</span> <span class="n">linkage_methods</span><span class="p">:</span>
+ <span class="n">linkage_data</span> <span class="o">=</span> <span class="n">agg_comparison_df</span><span class="p">[</span><span class="n">agg_comparison_df</span><span class="p">[</span><span class="s1">'linkage'</span><span class="p">]</span> <span class="o">==</span> <span class="n">linkage</span><span class="p">]</span>
+ <span class="k">if</span> <span class="ow">not</span> <span class="n">linkage_data</span><span class="o">.</span><span class="n">empty</span><span class="p">:</span>
+ <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">linkage_data</span><span class="p">[</span><span class="s1">'metric'</span><span class="p">],</span> <span class="n">linkage_data</span><span class="p">[</span><span class="s1">'silhouette_score'</span><span class="p">],</span> <span class="s1">'o-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">linkage</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Metric'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Silhouette Score'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Silhouette Score by Linkage Method and Metric'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">rotation</span><span class="o">=</span><span class="mi">45</span><span class="p">)</span>
+
+<span class="c1"># ARI comparison</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
+<span class="k">for</span> <span class="n">linkage</span> <span class="ow">in</span> <span class="n">linkage_methods</span><span class="p">:</span>
+ <span class="n">linkage_data</span> <span class="o">=</span> <span class="n">agg_comparison_df</span><span class="p">[</span><span class="n">agg_comparison_df</span><span class="p">[</span><span class="s1">'linkage'</span><span class="p">]</span> <span class="o">==</span> <span class="n">linkage</span><span class="p">]</span>
+ <span class="k">if</span> <span class="ow">not</span> <span class="n">linkage_data</span><span class="o">.</span><span class="n">empty</span><span class="p">:</span>
+ <span class="n">plt</span><span class="o">.</span><span class="n">plot</span><span class="p">(</span><span class="n">linkage_data</span><span class="p">[</span><span class="s1">'metric'</span><span class="p">],</span> <span class="n">linkage_data</span><span class="p">[</span><span class="s1">'ari'</span><span class="p">],</span> <span class="s1">'o-'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="n">linkage</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Metric'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Adjusted Rand Index'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'ARI by Linkage Method and Metric'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xticks</span><span class="p">(</span><span class="n">rotation</span><span class="o">=</span><span class="mi">45</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4913fd5a">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Dendrograms-for-Comparison">Dendrograms for Comparison<a class="anchor-link" href="#Dendrograms-for-Comparison">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=67e758d4">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [18]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Create side-by-side dendrograms for comparison</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span>
+
+<span class="c1"># First dendrogram (ward linkage with Euclidean distance)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
+<span class="n">dendrogram1</span> <span class="o">=</span> <span class="n">sch</span><span class="o">.</span><span class="n">dendrogram</span><span class="p">(</span><span class="n">sch</span><span class="o">.</span><span class="n">linkage</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s1">'ward'</span><span class="p">,</span> <span class="n">metric</span><span class="o">=</span><span class="s1">'euclidean'</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Dendrogram: Ward Linkage with Euclidean Metric'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Samples'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Euclidean Distance'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">axhline</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="mi">10</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'r'</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s1">'--'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Cut line for 3 clusters'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+
+<span class="c1"># Second dendrogram (best parameters)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
+<span class="n">dendrogram2</span> <span class="o">=</span> <span class="n">sch</span><span class="o">.</span><span class="n">dendrogram</span><span class="p">(</span><span class="n">sch</span><span class="o">.</span><span class="n">linkage</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">method</span><span class="o">=</span><span class="s2">"average"</span><span class="p">,</span> <span class="n">metric</span><span class="o">=</span><span class="s2">"cityblock"</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Dendrogram: Average Linkage with Manhattan Metric'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Samples'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Manhattan Distance'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">axhline</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="mf">3.7</span><span class="p">,</span> <span class="n">color</span><span class="o">=</span><span class="s1">'r'</span><span class="p">,</span> <span class="n">linestyle</span><span class="o">=</span><span class="s1">'--'</span><span class="p">,</span> <span class="n">label</span><span class="o">=</span><span class="s1">'Cut line for 3 clusters'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">()</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=4aa3b45b">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Apply-Both-Clustering-Algorithms-with-Best-Parameters">Apply Both Clustering Algorithms with Best Parameters<a class="anchor-link" href="#Apply-Both-Clustering-Algorithms-with-Best-Parameters">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=367e5fcb">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [19]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Apply both clustering algorithms with optimal clusters (3)</span>
+<span class="n">optimal_clusters</span> <span class="o">=</span> <span class="mi">3</span>
+
+<span class="c1"># K-Means</span>
+<span class="n">kmeans</span> <span class="o">=</span> <span class="n">KMeans</span><span class="p">(</span><span class="n">n_clusters</span><span class="o">=</span><span class="n">optimal_clusters</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">42</span><span class="p">,</span> <span class="n">n_init</span><span class="o">=</span><span class="mi">10</span><span class="p">)</span>
+<span class="n">kmeans_labels</span> <span class="o">=</span> <span class="n">kmeans</span><span class="o">.</span><span class="n">fit_predict</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">)</span>
+
+<span class="c1"># Agglomerative Clustering with best parameters</span>
+<span class="n">best_linkage</span> <span class="o">=</span> <span class="s2">"average"</span>
+<span class="n">best_metric</span> <span class="o">=</span> <span class="s2">"manhattan"</span>
+<span class="n">agg_best</span> <span class="o">=</span> <span class="n">AgglomerativeClustering</span><span class="p">(</span><span class="n">n_clusters</span><span class="o">=</span><span class="n">optimal_clusters</span><span class="p">,</span>
+ <span class="n">linkage</span><span class="o">=</span><span class="n">best_linkage</span><span class="p">,</span>
+ <span class="n">metric</span><span class="o">=</span><span class="n">best_metric</span><span class="p">)</span>
+<span class="n">agg_labels_best</span> <span class="o">=</span> <span class="n">agg_best</span><span class="o">.</span><span class="n">fit_predict</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">)</span>
+
+<span class="c1"># Also keep default agglomerative for comparison</span>
+<span class="n">agg_default</span> <span class="o">=</span> <span class="n">AgglomerativeClustering</span><span class="p">(</span><span class="n">n_clusters</span><span class="o">=</span><span class="n">optimal_clusters</span><span class="p">)</span>
+<span class="n">agg_labels_default</span> <span class="o">=</span> <span class="n">agg_default</span><span class="o">.</span><span class="n">fit_predict</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">)</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Cluster distributions:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"K-Means:"</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">bincount</span><span class="p">(</span><span class="n">kmeans_labels</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Agglomerative (default):"</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">bincount</span><span class="p">(</span><span class="n">agg_labels_default</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Agglomerative (best):"</span><span class="p">,</span> <span class="n">np</span><span class="o">.</span><span class="n">bincount</span><span class="p">(</span><span class="n">agg_labels_best</span><span class="p">))</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>Cluster distributions:
+K-Means: [53 50 47]
+Agglomerative (default): [71 49 30]
+Agglomerative (best): [50 35 65]
+</pre>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=ee087586">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Map-Clusters-to-True-Labels-for-Accuracy-Calculation">Map Clusters to True Labels for Accuracy Calculation<a class="anchor-link" href="#Map-Clusters-to-True-Labels-for-Accuracy-Calculation">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=d3b6c8fe">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [20]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Find best label mappings using permutation method</span>
+<span class="n">_</span><span class="p">,</span> <span class="n">kmeans_accuracy</span><span class="p">,</span> <span class="n">kmeans_mapped</span> <span class="o">=</span> <span class="n">label_permute_compare</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">kmeans_labels</span><span class="p">)</span>
+<span class="n">_</span><span class="p">,</span> <span class="n">agg_accuracy_default</span><span class="p">,</span> <span class="n">agg_mapped_default</span> <span class="o">=</span> <span class="n">label_permute_compare</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_labels_default</span><span class="p">)</span>
+<span class="n">_</span><span class="p">,</span> <span class="n">agg_accuracy_best</span><span class="p">,</span> <span class="n">agg_mapped_best</span> <span class="o">=</span> <span class="n">label_permute_compare</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_labels_best</span><span class="p">)</span>
+
+<span class="c1"># Add mapped labels to dataframe</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Accuracy scores:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"K-Means = </span><span class="si">%.1f%%</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">kmeans_accuracy</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Agglomerative (default) = </span><span class="si">%.1f%%</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">agg_accuracy_default</span><span class="p">))</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"Agglomerative (best) = </span><span class="si">%.1f%%</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">agg_accuracy_best</span><span class="p">))</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>Accuracy scores:
+K-Means = 83.3%
+Agglomerative (default) = 82.7%
+Agglomerative (best) = 88.7%
+</pre>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=e483ddee">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Calculate-Performance-Metrics">Calculate Performance Metrics<a class="anchor-link" href="#Calculate-Performance-Metrics">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=35f8321f">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [21]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Calculate performance metrics for all methods</span>
+<span class="n">kmeans_silhouette</span> <span class="o">=</span> <span class="n">silhouette_score</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">kmeans_labels</span><span class="p">)</span>
+<span class="n">agg_silhouette_default</span> <span class="o">=</span> <span class="n">silhouette_score</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">agg_labels_default</span><span class="p">)</span>
+<span class="n">agg_silhouette_best</span> <span class="o">=</span> <span class="n">silhouette_score</span><span class="p">(</span><span class="n">X_scaled</span><span class="p">,</span> <span class="n">agg_labels_best</span><span class="p">)</span>
+
+<span class="n">kmeans_ari</span> <span class="o">=</span> <span class="n">adjusted_rand_score</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">kmeans_labels</span><span class="p">)</span>
+<span class="n">agg_ari_default</span> <span class="o">=</span> <span class="n">adjusted_rand_score</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_labels_default</span><span class="p">)</span>
+<span class="n">agg_ari_best</span> <span class="o">=</span> <span class="n">adjusted_rand_score</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_labels_best</span><span class="p">)</span>
+
+<span class="c1"># Create confusion matrices</span>
+<span class="n">kmeans_cm</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">kmeans_mapped</span><span class="p">)</span>
+<span class="n">agg_cm_default</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_mapped_default</span><span class="p">)</span>
+<span class="n">agg_cm_best</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">agg_mapped_best</span><span class="p">)</span>
+
+<span class="c1"># Create comparison table</span>
+<span class="n">comparison_df</span> <span class="o">=</span> <span class="n">pd</span><span class="o">.</span><span class="n">DataFrame</span><span class="p">({</span>
+ <span class="s1">'Algorithm'</span><span class="p">:</span> <span class="p">[</span><span class="s1">'K-Means'</span><span class="p">,</span> <span class="s1">'Agglomerative (default)'</span><span class="p">,</span> <span class="s1">'Agglomerative (best)'</span><span class="p">],</span>
+ <span class="s1">'Accuracy'</span><span class="p">:</span> <span class="p">[</span><span class="n">kmeans_accuracy</span><span class="p">,</span> <span class="n">agg_accuracy_default</span><span class="p">,</span> <span class="n">agg_accuracy_best</span><span class="p">],</span>
+ <span class="s1">'Silhouette Score'</span><span class="p">:</span> <span class="p">[</span><span class="n">kmeans_silhouette</span><span class="p">,</span> <span class="n">agg_silhouette_default</span><span class="p">,</span> <span class="n">agg_silhouette_best</span><span class="p">],</span>
+ <span class="s1">'Adjusted Rand Index'</span><span class="p">:</span> <span class="p">[</span><span class="n">kmeans_ari</span><span class="p">,</span> <span class="n">agg_ari_default</span><span class="p">,</span> <span class="n">agg_ari_best</span><span class="p">],</span>
+<span class="p">})</span>
+
+<span class="nb">print</span><span class="p">(</span><span class="s2">"PERFORMANCE COMPARISON:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"="</span> <span class="o">*</span> <span class="mi">60</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="n">comparison_df</span><span class="o">.</span><span class="n">round</span><span class="p">(</span><span class="mi">4</span><span class="p">))</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>PERFORMANCE COMPARISON:
+============================================================
+ Algorithm Accuracy Silhouette Score Adjusted Rand Index
+0 K-Means 0.8333 0.4599 0.6201
+1 Agglomerative (default) 0.8267 0.4467 0.6153
+2 Agglomerative (best) 0.8867 0.4530 0.7184
+</pre>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=40a07c6f">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Visualize-Confusion-Matrices">Visualize Confusion Matrices<a class="anchor-link" href="#Visualize-Confusion-Matrices">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=faa58c91">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [22]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Plot confusion matrices</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">6</span><span class="p">))</span>
+
+<span class="c1"># K-Means Confusion Matrix</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
+<span class="n">sns</span><span class="o">.</span><span class="n">heatmap</span><span class="p">(</span><span class="n">kmeans_cm</span><span class="p">,</span> <span class="n">annot</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">'d'</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'Blues'</span><span class="p">,</span>
+ <span class="n">xticklabels</span><span class="o">=</span><span class="n">species_names</span><span class="p">,</span> <span class="n">yticklabels</span><span class="o">=</span><span class="n">species_names</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'K-Means Confusion Matrix</span><span class="se">\n</span><span class="s1">Accuracy: </span><span class="si">%.1f%%</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">kmeans_accuracy</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Predicted Label'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'True Label'</span><span class="p">)</span>
+
+<span class="c1"># Agglomerative Confusion Matrix (default)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
+<span class="n">sns</span><span class="o">.</span><span class="n">heatmap</span><span class="p">(</span><span class="n">agg_cm_default</span><span class="p">,</span> <span class="n">annot</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">'d'</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'Greens'</span><span class="p">,</span>
+ <span class="n">xticklabels</span><span class="o">=</span><span class="n">species_names</span><span class="p">,</span> <span class="n">yticklabels</span><span class="o">=</span><span class="n">species_names</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Agglomerative Confusion Matrix (default)</span><span class="se">\n</span><span class="s1">Accuracy: </span><span class="si">%.1f%%</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">agg_accuracy_default</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Predicted Label'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'True Label'</span><span class="p">)</span>
+
+<span class="c1"># Agglomerative Confusion Matrix (best)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
+<span class="n">sns</span><span class="o">.</span><span class="n">heatmap</span><span class="p">(</span><span class="n">agg_cm_best</span><span class="p">,</span> <span class="n">annot</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">fmt</span><span class="o">=</span><span class="s1">'d'</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'Oranges'</span><span class="p">,</span>
+ <span class="n">xticklabels</span><span class="o">=</span><span class="n">species_names</span><span class="p">,</span> <span class="n">yticklabels</span><span class="o">=</span><span class="n">species_names</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Agglomerative Confusion Matrix (best)</span><span class="se">\n</span><span class="s1">Accuracy: </span><span class="si">%.1f%%</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">agg_accuracy_best</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'Predicted Label'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'True Label'</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=47fc86d9">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Visualize-the-Results">Visualize the Results<a class="anchor-link" href="#Visualize-the-Results">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=d9b35880">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [23]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Create comparison visualization</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">figure</span><span class="p">(</span><span class="n">figsize</span><span class="o">=</span><span class="p">(</span><span class="mi">25</span><span class="p">,</span> <span class="mi">5</span><span class="p">))</span>
+
+<span class="c1"># Actual species</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span>
+<span class="n">scatter</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">target</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'viridis'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'First Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Second Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Actual Species'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles</span><span class="o">=</span><span class="n">scatter</span><span class="o">.</span><span class="n">legend_elements</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">labels</span><span class="o">=</span><span class="n">species_names</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
+
+<span class="c1"># K-Means clusters (mapped)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
+<span class="n">scatter</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">kmeans_mapped</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'viridis'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'First Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Second Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'K-Means Clusters (Mapped)</span><span class="se">\n</span><span class="s1">Accuracy: </span><span class="si">%.1f%%</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">kmeans_accuracy</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles</span><span class="o">=</span><span class="n">scatter</span><span class="o">.</span><span class="n">legend_elements</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">labels</span><span class="o">=</span><span class="n">species_names</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
+
+<span class="c1"># Agglomerative clusters default (mapped)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
+<span class="n">scatter</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">agg_mapped_default</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'viridis'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'First Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Second Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Agglomerative Clusters (Default)</span><span class="se">\n</span><span class="s1">Accuracy: </span><span class="si">%.1f%%</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">agg_accuracy_default</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles</span><span class="o">=</span><span class="n">scatter</span><span class="o">.</span><span class="n">legend_elements</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">labels</span><span class="o">=</span><span class="n">species_names</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
+
+<span class="c1"># Agglomerative clusters best (mapped)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">4</span><span class="p">)</span>
+<span class="n">scatter</span> <span class="o">=</span> <span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">agg_mapped_best</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'viridis'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'First Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Second Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Agglomerative Clusters (best)</span><span class="se">\n</span><span class="s1">Accuracy: </span><span class="si">%.1f%%</span><span class="s1">'</span> <span class="o">%</span> <span class="p">(</span><span class="mi">100</span> <span class="o">*</span> <span class="n">agg_accuracy_best</span><span class="p">))</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">legend</span><span class="p">(</span><span class="n">handles</span><span class="o">=</span><span class="n">scatter</span><span class="o">.</span><span class="n">legend_elements</span><span class="p">()[</span><span class="mi">0</span><span class="p">],</span> <span class="n">labels</span><span class="o">=</span><span class="n">species_names</span><span class="o">.</span><span class="n">tolist</span><span class="p">())</span>
+
+<span class="c1"># Error comparison</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">subplot</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">5</span><span class="p">)</span>
+<span class="n">kmeans_errors</span> <span class="o">=</span> <span class="p">(</span><span class="n">target</span> <span class="o">!=</span> <span class="n">kmeans_mapped</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">int</span><span class="p">)</span>
+<span class="n">agg_default_errors</span> <span class="o">=</span> <span class="p">(</span><span class="n">target</span> <span class="o">!=</span> <span class="n">agg_mapped_default</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">int</span><span class="p">)</span>
+<span class="n">agg_best_errors</span> <span class="o">=</span> <span class="p">(</span><span class="n">target</span> <span class="o">!=</span> <span class="n">agg_mapped_best</span><span class="p">)</span><span class="o">.</span><span class="n">astype</span><span class="p">(</span><span class="nb">int</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">scatter</span><span class="p">(</span><span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">0</span><span class="p">],</span> <span class="n">X_pca</span><span class="p">[:,</span> <span class="mi">1</span><span class="p">],</span> <span class="n">c</span><span class="o">=</span><span class="n">kmeans_errors</span> <span class="o">+</span> <span class="n">agg_default_errors</span> <span class="o">+</span> <span class="n">agg_best_errors</span><span class="p">,</span> <span class="n">cmap</span><span class="o">=</span><span class="s1">'Reds'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">xlabel</span><span class="p">(</span><span class="s1">'First Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">ylabel</span><span class="p">(</span><span class="s1">'Second Principal Component'</span><span class="p">)</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">title</span><span class="p">(</span><span class="s1">'Classification Errors</span><span class="se">\n</span><span class="s1">(Red intensity = more methods failed)'</span><span class="p">)</span>
+
+<span class="n">plt</span><span class="o">.</span><span class="n">tight_layout</span><span class="p">()</span>
+<span class="n">plt</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedImage jp-OutputArea-output" tabindex="0">
+<img alt="No description has been provided for this image" class="" src=""/>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=cdfe73f4">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h3 id="Detailed-Error-Analysis">Detailed Error Analysis<a class="anchor-link" href="#Detailed-Error-Analysis">¶</a></h3>
+</div>
+</div>
+</div>
+</div><div class="jp-Cell jp-CodeCell jp-Notebook-cell" id="cell-id=6562656d">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea">
+<div class="jp-InputPrompt jp-InputArea-prompt">In [24]:</div>
+<div class="jp-CodeMirrorEditor jp-Editor jp-InputArea-editor" data-type="inline">
+<div class="cm-editor cm-s-jupyter">
+<div class="highlight hl-ipython3"><pre><span></span><span class="c1"># Detailed error analysis</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"DETAILED ERROR ANALYSIS:"</span><span class="p">)</span>
+<span class="nb">print</span><span class="p">(</span><span class="s2">"="</span> <span class="o">*</span> <span class="mi">60</span><span class="p">)</span>
+
+<span class="k">for</span> <span class="n">method</span><span class="p">,</span> <span class="n">mapped_labels</span><span class="p">,</span> <span class="n">accuracy</span> <span class="ow">in</span> <span class="p">(</span>
+ <span class="p">(</span><span class="s1">'K-Means'</span><span class="p">,</span> <span class="n">kmeans_mapped</span><span class="p">,</span> <span class="n">kmeans_accuracy</span><span class="p">),</span>
+ <span class="p">(</span><span class="s1">'Agglomerative (default)'</span><span class="p">,</span> <span class="n">agg_mapped_default</span><span class="p">,</span> <span class="n">agg_accuracy_default</span><span class="p">),</span>
+ <span class="p">(</span><span class="s1">'Agglomerative (best)'</span><span class="p">,</span> <span class="n">agg_mapped_best</span><span class="p">,</span> <span class="n">agg_accuracy_best</span><span class="p">),</span>
+<span class="p">):</span>
+ <span class="n">errors</span> <span class="o">=</span> <span class="n">target</span> <span class="o">!=</span> <span class="n">mapped_labels</span>
+ <span class="n">error_indices</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">errors</span><span class="p">)[</span><span class="mi">0</span><span class="p">]</span>
+
+ <span class="nb">print</span><span class="p">(</span><span class="s2">"</span><span class="si">%s</span><span class="s2">:"</span> <span class="o">%</span> <span class="n">method</span><span class="p">)</span>
+ <span class="nb">print</span><span class="p">(</span><span class="s2">" Accuracy: </span><span class="si">%.1f%%</span><span class="s2">"</span> <span class="o">%</span> <span class="p">(</span><span class="n">accuracy</span> <span class="o">*</span> <span class="mi">100</span><span class="p">))</span>
+ <span class="nb">print</span><span class="p">(</span><span class="s2">" Total errors: </span><span class="si">%2d</span><span class="s2">/</span><span class="si">%3d</span><span class="s2"> errors (</span><span class="si">%.1f%%</span><span class="s2">)"</span> <span class="o">%</span> <span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">errors</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">errors</span><span class="p">),</span> <span class="n">np</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">errors</span><span class="p">)</span> <span class="o">*</span> <span class="mi">100</span><span class="p">))</span>
+
+ <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">error_indices</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
+ <span class="n">error_samples</span> <span class="o">=</span> <span class="n">df</span><span class="o">.</span><span class="n">iloc</span><span class="p">[</span><span class="n">error_indices</span><span class="p">]</span>
+ <span class="nb">print</span><span class="p">(</span><span class="s2">" Error breakdown by species:"</span><span class="p">)</span>
+ <span class="k">for</span> <span class="n">species</span> <span class="ow">in</span> <span class="n">species_names</span><span class="p">:</span>
+ <span class="n">species_errors</span> <span class="o">=</span> <span class="n">error_samples</span><span class="p">[</span><span class="n">error_samples</span><span class="p">[</span><span class="s1">'species'</span><span class="p">]</span> <span class="o">==</span> <span class="n">species</span><span class="p">]</span>
+ <span class="n">total_species</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">target</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">species_names</span> <span class="o">==</span> <span class="n">species</span><span class="p">)[</span><span class="mi">0</span><span class="p">][</span><span class="mi">0</span><span class="p">])</span>
+ <span class="k">if</span> <span class="nb">len</span><span class="p">(</span><span class="n">species_errors</span><span class="p">)</span> <span class="o">&gt;</span> <span class="mi">0</span><span class="p">:</span>
+ <span class="nb">print</span><span class="p">(</span><span class="s2">" </span><span class="si">%s</span><span class="s2">: </span><span class="si">%2d</span><span class="s2">/</span><span class="si">%2d</span><span class="s2"> errors (</span><span class="si">%4.1f%%</span><span class="s2">)"</span> <span class="o">%</span> <span class="p">(</span><span class="n">species</span><span class="o">.</span><span class="n">ljust</span><span class="p">(</span><span class="mi">10</span><span class="p">),</span> <span class="nb">len</span><span class="p">(</span><span class="n">species_errors</span><span class="p">),</span> <span class="n">total_species</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">species_errors</span><span class="p">)</span><span class="o">/</span><span class="n">total_species</span><span class="o">*</span><span class="mi">100</span><span class="p">))</span>
+ <span class="nb">print</span><span class="p">()</span>
+</pre></div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell-outputWrapper">
+<div class="jp-Collapser jp-OutputCollapser jp-Cell-outputCollapser">
+</div>
+<div class="jp-OutputArea jp-Cell-outputArea">
+<div class="jp-OutputArea-child">
+<div class="jp-OutputPrompt jp-OutputArea-prompt"></div>
+<div class="jp-RenderedText jp-OutputArea-output" data-mime-type="text/plain" tabindex="0">
+<pre>DETAILED ERROR ANALYSIS:
+============================================================
+K-Means:
+ Accuracy: 83.3%
+ Total errors: 25/150 errors (16.7%)
+ Error breakdown by species:
+ versicolor: 11/50 errors (22.0%)
+ virginica : 14/50 errors (28.0%)
+
+Agglomerative (default):
+ Accuracy: 82.7%
+ Total errors: 26/150 errors (17.3%)
+ Error breakdown by species:
+ setosa : 1/50 errors ( 2.0%)
+ versicolor: 23/50 errors (46.0%)
+ virginica : 2/50 errors ( 4.0%)
+
+Agglomerative (best):
+ Accuracy: 88.7%
+ Total errors: 17/150 errors (11.3%)
+ Error breakdown by species:
+ versicolor: 1/50 errors ( 2.0%)
+ virginica : 16/50 errors (32.0%)
+
+</pre>
+</div>
+</div>
+</div>
+</div>
+</div>
+<div class="jp-Cell jp-MarkdownCell jp-Notebook-cell" id="cell-id=844c0784">
+<div class="jp-Cell-inputWrapper" tabindex="0">
+<div class="jp-Collapser jp-InputCollapser jp-Cell-inputCollapser">
+</div>
+<div class="jp-InputArea jp-Cell-inputArea"><div class="jp-InputPrompt jp-InputArea-prompt">
+</div><div class="jp-RenderedHTMLCommon jp-RenderedMarkdown jp-MarkdownOutput" data-mime-type="text/markdown">
+<h2 id="Discussion-and-Interpretation">Discussion and Interpretation<a class="anchor-link" href="#Discussion-and-Interpretation">¶</a></h2><p>Based on the comprehensive analysis with different linkage methods and metric parameters:</p>
+<h3 id="Species-Specific-Insights:">Species-Specific Insights:<a class="anchor-link" href="#Species-Specific-Insights:">¶</a></h3><p>Iris setosa was classified with near-perfect accuracy across all methods due to its distinct morphological features. The main challenge remains distinguishing between versicolor and virginica species, which are not linearly separable.</p>
+<h3 id="Key-Findings:">Key Findings:<a class="anchor-link" href="#Key-Findings:">¶</a></h3><ol>
+<li><strong>Parameter Sensitivity</strong>: Agglomerative Clustering performance varies significantly with different parameter combinations</li>
+<li><strong>Best Parameters</strong>: The combination of Average linkage with Manhattan metric achieved the highest accuracy of 88.7%</li>
+<li><strong>Performance Improvement</strong>: Optimized parameters improved Agglomerative Clustering accuracy from 82.7% to 88.7%</li>
+<li><strong>Confusion Matrix Balance</strong>: K-Means had a much more balanced confusion matrix, with the errors among versicolor and virginica split almost equally, whereas both Agglomerative Clustering methods had a bias towards one of them over the other</li>
+</ol>
+<h3 id="Practical-Implications:">Practical Implications:<a class="anchor-link" href="#Practical-Implications:">¶</a></h3><ul>
+<li>Parameter tuning is crucial for Agglomerative Clustering performance</li>
+<li>Different linkage methods capture different cluster structures</li>
+<li>The optimal parameter combination may vary across different datasets</li>
+</ul>
+<p>This poses a problem when using Agglomerative Clustering for such types of tasks, as in cases where the labels are not readily available, it would be difficult to check which parameters perform best for the current task.</p>
+<p>Furthermore, the fact that even with parameter tuning the confusion matrix of Agglomerative Clustering was still biased (but to the opposite group) suggests an inherent instability in the method. Given a few different datapoints, the balance in the middle group in the hierarchy could tip again, completely changing the composition of the clusters and potentially harming accuracy alot.</p>
+<p>Given this analysis, I would suggest that practical applications on tasks very similar to this one to use K-Means Clustering instead of Agglomerative Clustering, even though the above accuracy values might suggest otherwise.</p>
+<h3 id="Limitations-and-Future-Work:">Limitations and Future Work:<a class="anchor-link" href="#Limitations-and-Future-Work:">¶</a></h3><p><strong>Current Limitations:</strong></p>
+<ul>
+<li>Limited to Iris dataset characteristics</li>
+<li>Did not perform deep parameter optimization on K-Means Clustering</li>
+</ul>
+<p><strong>Future Directions:</strong></p>
+<ul>
+<li>Extend analysis to other clustering variants</li>
+<li>Incorporate additional validation metrics</li>
+<li>Apply to larger, more complex botanical datasets</li>
+</ul>
+</div>
+</div>
+</div>
+</div>
+</main>
+</body>
+</html>